RERTR - 2022 International Meeting on Reduced Enrichement for Research and Test Reactors

RERTR-2022

42ND International Meeting on Reduced Enrichment for Research and Test Reactors

Water channel thickness estimation through high frequency ultrasonic measurements

Post Examination of the Reactor high flux Single Element with Ultra-Sounds

R. MRABTI, Pr. E. LE CLEZIO, Dr. Y. CALZAVARA, Pr. G. DESPAUX

rhofrane.mrabti@ies.univ-montp2.fr

Institute of Electronics and Systems UMR 5214 – CNRS Montpellier University France

Institute Laue Langevin (ILL) 71 Avenue des Martyrs, Grenoble France

Project Challenge description

The ILL High Flux Reactor

Objective: Development of a high frequency ultrasonic device for measuring the inter-plate distance to characterize the swelling of fuel plates.

Fuel element

High Flux Reactor of 58 MW of thermal power

Fuel plate swelling

Measurement Constraints

The ILL High Flux Reactor

- Project Challenge description
- ✤ Non destructive high frequency ultrasonic device
- ✤ Ultrasound field modeling
- ✤ Laboratary experiment
- Conclusion and prospects

Non destructive high frequency ultrasonic device

Distance Measurement Principle

IES INSTITUT D'ÉLECTRONIQUE ET DES SYSTÈMES

NEUTRONS FOR SCIENCE®

Non destructive high frequency ultrasonic device

Resonance Frequency of transducers

NEUTRON: FOR SCIENCE

υ

Ultrasound field modeling

Implementation of Finite Difference Time Domain (FDTD) method

Estimate the behavior of the acoustic field

- Understanding the generation of the signal and evaluate the cross talk within the transducers
 - Modeling the wave equation in the time domain

Approximation of the spatial and temporal derivatives

Rectangular mesh

1800µm

Model Structure

FDTD Computation of the wave propagation in the model structure

FDTD Computation of the wave propagation in the model structure

Acquired reflected ulrasonic and simulated signals comprising the two series of echoes.

Laboratory Experiments

Guiding system for device control

• Stabilized ultrasonic device positionning system allowing acquisitions at 70 MHz .

Alignement :

INSTITUT D'ÉLECTRONIQUE

DES SYSTÈMES

Distance inter-plaque measurement:

•
$$R(x), R(y), R(z)$$
 • $T(y), T(z)$

FOR SCIENCE

Acquired reflected ulrasonic signal comprising two series of echoes.

1.8mm

NEUTRONS FOR SCIENCE®

Signal with one echo serie

1.00 1.00 1.00 Response of transducer 2 Reference signal Response of transducer 1 0.75 0.75 0.75 0.50 0.50 0.50 0.25 0.25 0.25 0.00 0.00 0.00 -0.25 -0.25 -0.25 -0.50 -0.50 -0.50 Time of flight --0.75 -0.75 -0.75 -1.00-1.00-1.000 1 2 3 5 4 0 1 2 3 4 5 0 1 2 5 1e-6 1e-6 1e-6 1.00 New predicted time of flight by 0.75 cross correlation 0.50 **Cross-correlation between the two** 0.25 A(A.U) echo series 0.00 -0.25 -0.50 -0.75 INSTITUT D'ÉLECTRONIQUE ET DES SYSTÈMES -1.000.4 1.0 0.0 0.2 0.6 0.8 11

Signals with two echo series

1e-5

Distance inter-plate measurement

NEUTRONS FOR SCIENCE

Distance measurement throught the evaluation of the time of flight between two series of echoes and the ultrasonic velocity

Distance inter-plate measurement

NEUTRONS FOR SCIENCE

Distance measurement throught the evaluation of the time of flight between two series of echoes and the ultrasonic velocity

Position	Mean	Standard deviation
1_70 mm	1.7987 mm	0.09 μm
2_70 mm	1.7979 mm	0.07 μm
3_70 mm	1.7978 mm	0.05 µm
1_30 mm	1.7941 mm	0.12 μm
2_30 mm	1.7939 mm	0.09 µm
3_30 mm	1.7939 mm	0.06 µm

- Development of a high frequency ultrasonic device for the distance inter-plate measurement ;
- Modeling of the wave propagation within the model structure by the finite difference ;
- A high accuracy with the experimental signal.

Prospects

- Development of a guiding system for device control into the fuel element ;
- The next in situ measurement compaing inside the HFR through the new ultrasonic device and its measurement bench ;
- Inter-plate distance line scan experiments with high resolution.

Thanks for your attention

