NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

RERTR 2022 – 42ND INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS

> October 3-5, 2022 Vienna International Centre Vienna, Austria

NIST Neutron Source Preconceptual Design

This paper is dedicated to the memory of Robert E. Williams

Dağıstan Şahin, Ph.D., Nuclear Engineer

Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr.,

20899 Gaithersburg, MD, USA

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this study in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Introduction: NCNR & NBSR

- NCNR is one of the USA primary resources for neutron research
- NBSR history of successful operation since 1967
- NBSR license to expire in 2029
- New NIST neutron source (NNS) is conceptualized
- Neutronics, Thermal Hydraulic, Beam Delivery and Facilities

Design of NNS

- Nominal power of 20 MW
- U-10Mo LEU (or U3Si2)
- Light-water-cooled compact reactor core
- Surrounded by heavy-water in the reflector tank
- 2 Cold Neutron Sources
- 8 Thermal Neutron Beams

NIS

Reflector Tank with the core, cold sources, and beam tubes

Design of NNS

- Nine fuel assemblies (FA) in a 3x3 array
- Each FA contains 21 U-10Mo fuel plates
- 19.75% enriched Y-12 fuel wrapped with ~8 μm thick zirconium foil
- Six control blades placed in two guide boxes
- Core horizontally divided into three rows
- 64 coolant channels at each row
- Optimize fuel cycle length & maintain a negative reactivity feedback

Design of NNS

Fuel Assembly

Power Distributions

$$PPF = \frac{\dot{Q}_{plate}}{\langle \dot{Q}_{plate} \rangle}$$

- SU = Startup
- BOC = Beginning of Cycle ٠
- MOC = Middle of Cycle
 - EOC = End of Cycle

NIS

CENTER FOR NEUTRON RESEARCH

Power Peaking Factors (PPFs) in each fuel plate at each cycle state

Fission & Power Densities

Fission densities throughout the core at multiple cycles and multiple cycle states

Thermal-hydraulics Review

- Coolant channel is approximated with a rectangular channel
- The channel gap is constant
- The coolant velocity is the average velocity at the cross section
- The generated heat dissipates symmetrically from each side of the fuel element
- The power density is uniform within a fuel cell element
- The specific heat at each cell is evaluated at the inlet temperature of the cell
- Uses pressure drop equation which is the integrated version of the 1-D momentum equation
- there are 4 different channel types in the hydraulics model

Outlet

CENTERFOR

Currently being refined

Thermal-hydraulics Results

Cladding Temperatures for Multiple Fuel Elements at SU

Power	Maximum Bulk Temperature			Maximum Cladding Wall Temperature		
Distribution	Value (K)	Channel #	Row	Value (K)	Channel #	Row
Uniform	326.7	33	В	346.4	33	В
SU	332.5	2	С	360.9	1	С
BOC	332.4	2	А	360.5	1	А
мос	332.9	63	В	358.4	63	В
EOC	329.8	63	В	355	63	В

Power Distribution	20 MW Core			
Power Distribution	mCHFR	mOFIR		
Uniform	4.02	20.1		
SU	2.22	12.9		
BOC	2.18	13.6		
MOC	2.42	15.2		
EOC	2.61	15.1		

CHFR computed with Sudo-Kaminaga correlations OFIR computed with Saha-Zuber correlation

Proposed Cold Neutron Instruments

Plan view through the fuel center of the reactor core

Instrument type	Total Number	End position
Small-Angle Neutron Scattering (SANS)	2-3	YES
Reflectometer (CANDOR type)	2	YES
Cold Neutron Imaging (CNI)	2	YES
Cold 3-Axis (CN3X)	2	YES
Backscattering (BS)	2	YES/NO?
Neutron Spin-Echo (NSE) (Mezei-type)	1	YES
Neutron Spin-Echo (NSE) (WASP type)	1	YES
High current physics experimental position (Physics)	1	YES
Prompt Gamma Activation Analysis (PGAA)	1	YES
Neutron Depth Profiling (NDP)	1	YES
Materials Diffractometer ($\lambda > 0.3$ nm)?	1?	YES
Interferometer	1?	NO
Monochromatic Physical Measurements Laboratory (PML) positions	2-3?	NO
Miscellaneous monochromatic/ test positions	2-3?	NO
Very Small-Angle Neutron Scattering (vSANS)	1	YES
TOTAL	22-25	16-18

Proposed Cold Neutron Instruments

Proposed Thermal Neutron Instruments

View of Potential Thermal Instruments

Instrument Type	Abbreviation
Prompt Gamma Neutron Activation Analysis	PGNAA
Neutron Microscope	Imaging
High-Resolution powder diffractometer	D
Triple Axis Spectrometer	3X
Ultra-Small Angle Neutron Scattering	USANS
High Throughput Fast Powder Diffractometer	D
White Beam Engineering Diffractometer (with CANDOR-type detector)	ENG
High Current Physics Experimental Position	PHYS

Proposed Thermal Neutron Instruments

Performance Comparison

- Peak unperturbed reflector thermal neutron flux
 NBSR 2×10¹⁴ cm⁻²s⁻¹
 - \circ NNS 5×10¹⁴ cm⁻²s⁻¹
- Total cold neutron (λ > 0.4 nm) current gain between 6.5 and 8.4
- Gain at the instruments may be further enhanced
- Potential for a significant boost in the cold neutron experimental output
- Pool Type Reactor => simple maintenance
- Modular design for long term aging management

Conclusions & Future Work

- Basic neutronics and thermal-hydraulics analysis results showing the feasibility & safety
- Optimization studies to finalize optimum core designs
- Detailed analysis of core neutronics
- Complete CFD analysis and primary cooling system design
- Structural analysis
- Fuel evaluations U3Si2, U3O8 etc.

Questions??

Dağıstan Şahin, Osman Ş. Çelikten, Robert E. Williams, Jeremy Cook, Abdullah G. Weiss, Thomas H. Newton, David Diamond, Charles F. Majkrzak, Hubert E. King

> NIST Center for Neutron Research 100 Bureau Drive, Gaithersburg, 20899, USA

Joy S. Shen, Anil Gurgen Department of Mechanical Engineering University of Maryland, College Park, MD 20742, USA

Eliezer Nahmani, Idan R. Baroukh

Nuclear Research Center Negev P.O.B. 9001 84190, Beer-Sheva, ISRAEL

Lap-Yan Cheng

Nuclear Science & Technology Department Brookhaven National Laboratory, P.O. Box 5000 Upton, NY 11973-5000, USA

Elevation view of primary coolant system

Equilibrium Core Search

18

Flux Spatial Distributions

Comparison with Existing USHPRRs

Power and Fission Density Profiles in other USHPRR