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Disclaimer: The information associated with this document is preliminary, for 
information only, and should not be used as design input or operating 
parameters without user qualification.
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• Homogeneous U3Si2-Al dispersion fuel made through controlled particle 

size distribution (PSD).

Fuel Microstructure and Finite Element Model Setup

Arc melted pure U3Si2

Sieved 

Ground

Compacted

U3Si2-Al fuel microstructure 
(1mm x 1mm)

U3Si2 (45.3%) 
volume fraction)

Al (54.7%) 
volume fraction)

• U3Si2 and Al material phases are conformingly meshed with mixed 

quadratic/triangle elements for an increased numerical accuracy.

• Max/min element sizes are 10/5 𝜇m, leading 

to 47,003 nodes and 71,555 elements.

• Thermal boundary conditions are applied on 

the studied fuel microstructure.

𝜅𝑒 =
σ𝑖=1
𝑛 𝑞𝑎𝑖𝑣𝑖

𝑇𝑏𝑜𝑡 − 𝑇𝑡𝑜𝑝 𝐴

𝑞𝑎𝑖:  Y-heat flux for element 𝑖

𝑣𝑖:   area of element 𝑖

𝐴:    total fuel microstructure area

• Density, thermal conductivity, and heat 

capacity properties of Al and U3Si2 used in 

the finite element method (FEM) model are 

obtained from literature.

Simulation Results

• Steady-state temperature is non-uniformly distributed because of the 

inhomogeneous material microstructure.

• Heat fluxes in y-direction mainly through channels where Al is rich. 

• Effective U3Si2-Al fuel thermal conductivity at 60°C is 𝜅𝑒 = 78.57 W/m·°C
using following equation1.

our result 
at 60 °C

Comparison with literature2 Model predicted TC at different T

Surrogate U3Si2 particle Shapes

• Surrogate circular and elliptical shapes are used to rapidly generate the 

microstructure to study influence of particle VF on fuel TC.

Circular shape 

(1M elements) 

Elliptical shape

(1M elements) 

• Fuel domains with circular and elliptical particle shapes have higher TC 

compared to the domain with real particle shape.

• U3Si2-Al fuel TC increases with decrease of U3Si2 volume fraction.

• Model predicted TC are slightly higher than experimental results, because 

pores are not considered in the current model.

• TC of U3Si2/Al fuel is nonlinear with respect to temperature.
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Heat Generation Model for Cladded U3Si2-Al Fuel

• Goal: develop a FEM model to understand temperature and heat flux 

distribution in U3Si2-Al dispersion fuel during irradiation.

U3Si2 dispersoid fuel plate during irradiation

AA6061-T6 clad

U3Si2 particles

(with heat generation)

Al matrix

AA6061-T6 clad

U3Si2 particle heat generation (heat source)

Constant 200 °C on top and right clad3

Adiabatic

Adiabatic

• A quarter-sized heat generation model is developed with surrogate circular 

particle shape and thermal boundary conditions. 

• Simulation results with mean particle size (PS) 70 𝜇m, standard deviation 

17𝜇m, particle VF 42.5%, and particle heat generation (HG) rate 30 kW/s.m3.

Steady-state temperature distribution

Prominent heat flux in y-direction

°C

W/cm2

• Model predicted fuel core temperature is around 231.9 to 247.8 °C, the Y-

heat flux on top clad surface is around 450-500 W/cm2, which are 

consistent with the experimental results3.

• Parametric study shows larger particle size leads to larger top clad Y-flux 

and maximum fuel central line temperature.

• Higher particle heat generation rate leads to larger top clad Y-flux and 

maximum fuel central line temperature.
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Objective & Motivation

• U3Si2-Al dispersion fuel is proposed to convert the U.S. High Flux Isotope 

Reactor (HFIR) to a High Assay Low Enriched Uranium (HALEU) fuel.

• Numerically predicting the thermophysical properties of U3Si2-Al dispersion 

fuel, such as thermal conductivity (TC), temperature (T), and heat flux 

(HFL), is fundamental to the efficient and safe operation of nuclear reactors.

• Modeling the thermophysical properties of U3Si2-Al dispersion fuel is 

complicated by the inhomogeneous nature of dispersion fuels in fuel 

composition and microstructure.

• Simulations were run with 8 CPUs on HPC 

workstation equipped with 16 cores (32 

processors) and 192 memory.


