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a Objective & Motivation

» U;SI,-Al dispersion fuel is proposed to convert the U.S. High Flux Isotope
Reactor (HFIR) to a High Assay Low Enriched Uranium (HALEU) fuel.

« Numerically predicting the thermophysical properties of U;Si,-Al dispersion
fuel, such as thermal conductivity (TC), temperature (T), and heat flux
(HFL), 1s fundamental to the efficient and safe operation of nuclear reactors.

» Modeling the thermophysical properties of U,Si,-Al dispersion fuel is
complicated by the inhomogeneous nature of dispersion fuels in fuel
composition and microstructure.
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* Homogeneous U;Si,-Al dispersion fuel made through controlled particle
size distribution (PSD).
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Arc melted pure U;Si, U,Si,-Al fuel microstructure
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* U,SI, and Al material phases are conformingly meshed with mixed
guadratic/triangle elements for an increased numerical accuracy.

Tyop = 50°C

« Max/min element sizes are 10/5 um, leading
to 47,003 nodes and 71,555 elements.

» Thermal boundary conditions are applied on
the studied fuel microstructure.

Density, thermal conductivity, and heat
capacity properties of Al and U,;SI, used In
the finite element method (FEM) model are
obtained from literature.

 Simulations were run with 8 CPUs on HPC
workstation equipped with 16 cores (32
processors) and 192 memory.
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Simulation Results

« Steady-state temperature is non-uniformly distributed because of the
Inhomogeneous material microstructure.

« Heat fluxes in y-direction mainly through channels where Al is rich.
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 Effective U;SI,-Al fuel thermal conductivity at 60°C is k, = 78.57 W/m-°C
using following equation?.
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* Model predicted TC are slightly higher than experimental results, because
pores are not considered in the current model.
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Heat Generation Model for Cladded U,Si,-Al Fuel

» Goal: develop a FEM model to understand temperature and heat flux
distribution in U,;Si,-Al dispersion fuel during irradiation.
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U,SI, dispersoid fuel plate during irradiation
* A quarter-sized heat generation model is developed with surrogate circular

particle shape and thermal boundary conditions.
Adiabatic Constant 200 °C on top and right clad?®
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U,SI, particle heat generation (heat source)

Simulation results with mean particle size (PS) 70 um, standard deviation
17um, particle VF 42.5%, and particle heat generation (HG) rate 30 kW/s.m?.
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» U;SI,-Al fuel TC increases with decrease of U,SI, volume fraction.
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