U-Mo bare foil rolling progress for FRM II conversion

BUDUCAN K.1,2, LORAND S.1, STEPNIK B.1, RONTARD C.1, GAUCHE F.1
BAUMEISTER B.2, SCHWARZ C.2, CHEMNITZ T.2, PETRY W.2

1: Framatome (CERCA division)
2 Rue Professeur Jean Bernard, 69007 Lyon – France

2: Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) Technische Universität München, Lichtenbergstr. 1, 85747 Garching – Germany

Vienna – RERTR 2022 – 03/10/2022
CONTENT

01. FRM II conversion purposes

02. U-Mo flat rolling process

03. U-Mo bare foil results

04. Conclusion & perspectives
FRM II conversion purposes

Current situation

Figure 1: FRM II research reactor (Garching, Germany)
FRM II conversion purposes

Current situation

Figure 1: FRM II research reactor (Garching, Germany)

Figure 2: FRM II pool with fuel assembly scheme
FRM II conversion purposes

Fuel conversion

Figure 3: Transverse cut of actual FRM II fuel

\[\text{U}_3\text{Si}_2 \text{ Plate Highly Enriched Fuel (HEU > 20\% U}_{235} \]
FRM II conversion purposes

Fuel conversion

Figure 3: Transverse cut of actual FRM II fuel

U$_3$Si$_2$ Plate Highly Enriched Fuel (HEU > 20% U_{235})

Figure 4: New FRM II fuel composition

Aluminum UMo Zirconium
FRM II conversion purposes

New fuel plate manufacturing process in Framatome

Figure 5: Manufacturing process flow for the new FRM II fuel
FRM II conversion purposes

Progress & schedule of R&D fuel development

Development of U-Mo alloy (2020 - 2021)

Hot rolling U-Mo tests with depleted uranium (May 2022 – December 2022)

Hot rolling inert tests (August 2021 – April 2022)

Lower enrichment U-Mo bare foil production (January 2023 – March 2023)
FRM II conversion purposes

Progress & schedule of R&D fuel development

Development of U-Mo alloy (2020 - 2021)

Hot rolling U-Mo tests with depleted uranium (May 2022 – December 2022)

Hot rolling inert tests (August 2021 – April 2022)

Lower enrichment U-Mo bare foil production (January 2023 – March 2023)

PVD in FRMII - TUM

C2TWP in CERCA
U-MO BARE FOIL ROLLING PROGRESS FOR FRM II CONVERSION - BUĐUCAN Kevin - RERTR 2022 - 03/10/2022 © Framatome - All rights reserved

C0 - Distribution libre / Export Control - AL : N ECCN : N

FRM II conversion purposes

Focus on for FUTURE-MONO 1 irradiation

- **Development of U-Mo alloy (2020 - 2021)**
- **Flat rolling U-Mo tests with depleted uranium (May 2022 – December 2022)**
- **Flat rolling inert tests (August 2021 – April 2022)**
- **Lower enrichment U-Mo bare foil production (January 2023 – March 2023)**
- **FUTURE-MONO 1 irradiation (October 2023)**
- **PVD in FRMII - TUM**
- **C2TWP in CERCA**
FRM II conversion purposes

New fuel plate manufacturing process in Framatome

Focus on:
- hot flat rolling
- U-Mo bare foil removing
U-Mo flat rolling process

Equipment available for U-Mo rolling

- **Hot rolling mill characteristics:**
 - Rolling speed and roll gap controllable
 - Max. & min thickness: 20 to 0.1 mm
 - 2-Hi & 4-Hi according foil thickness

Figure 6: Hot rolling mill in CERCA lab
U-Mo flat rolling process

Equipment available for U-Mo rolling

- **Hot rolling mill characteristics:**
 - Rolling speed and roll gap controllable
 - Max. & min thickness: 20 to 0.1 mm
 - 2-Hi & 4-Hi according foil thickness

- **Cold rolling mill characteristics:**
 - Rolling speed and roll gap controllable
 - Max & min thickness: 1 to 0.1 mm
 - 4-Hi for foil finalization

Figure 6: Hot rolling mill in CERCA lab

Figure 7: Cold rolling mill into glovebox
U-Mo flat rolling process

Equipment available for U-Mo rolling

- **Hot rolling mill characteristics:**
 - Rolling speed and roll gap controllable
 - Max. & min thickness: 20 to 0.1 mm
 - 2-Hi & 4-Hi according foil thickness

![Figure 6: Hot rolling mill in CERCA lab](image-url)
U-Mo flat rolling process

Hot flat rolling process manufacturing description

Figure 8: Flat rolling step for U-Mo bare foil manufacturing
U-Mo flat rolling process

Hot flat rolling process manufacturing description

DEVELOPMENT OF LASER PROCESSES ON U-10Mo MONOLITHIC FUEL FABRICATION PROCESS AT FRAMATOME (CERCA BUSINESS LINE)
U-Mo flat rolling process

Hot flat rolling process manufacturing description

DEVELOPMENT OF LASER PROCESSES ON U-10Mo MONOLITHIC FUEL FABRICATION PROCESS AT FRAMATOME (CERCA BUSINESS LINE)

FIRST RESULTS OF THE EUROPEAN MANUFACTURING PROCESS FOR BARE U-MO

RRFM 2021

RRFM 2022

U-Mo coupon

Welding

Lubrified & welded assembly

Hot rolling

Hot rolled assembly

Decanning

Canister

U-Mo bare foil hot rolled (Master foil)
U-Mo flat rolling process

U-Mo bare foil hot rolled laser removed inside glovebox

Figure 9: Decaning of U-Mo bare foil after hot rolling
U-Mo flat rolling process

U-Mo bare foil hot rolled laser removed inside glovebox

Figure 9: Decaning of U-Mo bare foil after hot rolling
U-Mo flat rolling process

U-Mo bare foil appearance after hot rolling

Foil A
- Length x Width: 550 x 100 mm
- Thickness: 0.600 mm

Foil B
- Length x Width: 350 x 100 mm
- Thickness: 0.850 mm

Figure 10: Flat rolling step for U-Mo bare foil manufacturing
U-Mo bare foil results

Hot rolling scheme for uranium & inert tests

- Assembly (canister + ingot) thickness reduced to **less than 1.5 mm**
- Working temperature: **650°C**
- **Constant rolling speed** and **load deflection** (as RRFM 2021 experiments) during the overall process
U-Mo bare foil results

Comparison with inert material

- Assembly (canister + ingot) thickness reduced to **less than 1.5 mm**
- Working temperature: **650°C**
- **Constant rolling speed and load deflection (as RRFM 2021 experiments)** during the overall process

Figure 11: Inert foil decanned by laser cutting
U-Mo bare foil results

Comparison with inert material

- High similarity on loads between inert tests & uranium
- Thickness measured slightly higher for uranium than inert

→ Hot rolling scheme of inert could be used for depleted uranium alloy
U-Mo bare foil results

Measurement map for both thickness & waviness profile

Figure 12: Experimental measurements map for both foil waviness and thickness
U-Mo bare foil results

Measurement map for both thickness & waviness profile

Figure 12: Experimental measurements map for both foil waviness and thickness
U-Mo bare foil results

U-Mo bare foil thickness distribution

Figure 13: U-Mo foil thickness heatmap from thickness mean value
U-Mo bare foil results

U-Mo bare foil thickness distribution

Figure 13: U-Mo foil thickness heatmap from thickness mean value
U-Mo bare foil results

U-Mo bare foil thickness distribution

- Mainly negative variation on edges & positive on center
- Random part variation due to ingot geometry and strength applying

→ Resolving by cold rolling process to homogenize thickness and by laser cutting of edge parts
U-Mo bare foil results

U-Mo bare foil waviness profile

Figure 14: Waviness profile for U-Mo foil on different foil sides
U-Mo bare foil results

U-Mo bare foil waviness profile

Figure 14: Waviness profile for U-Mo foil on different foil sides
U-Mo bare foil results

U-Mo bare foil waviness profile

- Extremum values on both side of hot rolled foil
- Mostly constant variation from reference between right, middle and left side

→ Resolving by cold rolling process to improve flatness, heat treatment under loads and laser cutting of both side could resolve theses issues
U-Mo bare foil results

Global foil quality: thermal gradient

Figure 15: Thermal impact on U-Mo foil after hot rolling
U-Mo bare foil results

Global foil quality: edge cracks

Edge foil cracks

Figure 16: U-Mo bare foil defects after hot rolling process
U-Mo bare foil results

Global foil quality: edge scratches

Figure 16: U-Mo bare foil defects after hot rolling process
U-Mo bare foil results

Global foil quality: edge scratches

- Temperature gradient which affects surface condition (oxide)
- Cracks and scratches on edge foil due to friction, contact with canister, roll strength and mechanical behavior of ingot

→ Resolving by laser cutting defects after hot rolling & better surface aspect and thickness control of ingot prior to hot rolling
Conclusions

- Hot rolling mill is implemented and well working in uranium in CERCA laboratory;
- Feasibility of hot rolled U-Mo bare foil in CERCA is demonstrated;
- Global quality of U-Mo bare foil produced will be improved for next manufacturing steps (waviness, thickness distribution, surface condition).
Conclusions

- Hot rolling mill is implemented and well working in uranium in CERCA laboratory;
- Feasibility of hot rolled U-Mo bare foil in CERCA is demonstrated;
- Global quality of U-Mo bare foil produced will be improved for next manufacturing steps (waviness, thickness distribution, surface condition).

Perspectives

- Hot-rolled foil characterization: microstructure, mechanical & thermal properties;
- Cold rolling process study for bare foil finalization;
- Improving the global process for further industrialization.
Thank You!
Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless Framatome has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal and disciplinary actions may be taken against any infringer and/or any person breaching the aforementioned obligations.