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THE DALAT NUCLEAR RESEARCH REACTOR (1)
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� Early 1960 - Construction of the  
TRIGA Mark II reactor started
� 26/2/1963 - First criticality of the 
TRIGA reactor 
� 4/3/1963 - Official inauguration of 
TRIGA reactor with the  
nominal power of 250 kW
� 1963-1968 - Reactor operated with 
the 3 main purposes: Training, 
Research and Isotope Production
� 1968-1975 - Reactor was in extended 
shutdown 
� 1974-1975 - Fuels were unloaded 
and shipped back to USA

Outside view of the DNRR



THE DALAT NUCLEAR RESEARCH REACTOR (2)
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� 9/10/1979: Contract No. 85/096-54100 for reconstruction 
and upgrading signed. 
Reactor name was changed to “IVV-9”

� 15/3/1982 - Start-up the reconstruction and upgrading 
work of the Dalat reactor. 

� 01/11/1983 - First criticality of the IVV-9 reactor
� 20/3/1984 - Official inauguration of the IVV-9 reactor with  

the nominal power of 500 kW.
�3/1984 -11/2011 - Reactor has operated using HEU fuel
�12/2011 – present - Reactor has operated using LEU fuel for

- Radioisotopes production;
- Neutron activation analysis;
- Basic and applied research in nuclear physics;
- Research on reactor physics and thermo-hydraulics;
- Personnel training and education.
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REACTOR DESCRIPTION (1) 
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� Thermal power: 500 kWt
� Coolant and moderator: Light water
� Core configuration: Cylindrical core of 
about 44.2cm diameter and 60cm height.
�Core cooling mechanism: 

Natural convection
� Number of fuel assemblies in the core: 

89 (1984-1994), 100 (1994-2002), 104 
(3/2002-6/2004), 104 reshuffled (6/2004), 106 
(10/2006), 98 HEU+6 LEU (9/2007), 92 
HEU+12 LEU (7/2009-8/2011), 92 LEU 
(12/2011- 4/2021), 94 LEU (5/2021-5/2022), 
96 LEU (6/2022 - up to now).
� 7 control rods: 2 safety rods (B4C), 4 shim 
rods (B4C) and  one automatic regulating rod 
(SS)
� 3 nuclear channels: 2 ranges in each channel 
(Start-up range and working range)
� Neutron reflector: Beryllium and graphite.

MAIN CHARACTERISTICS



REACTOR DESCRIPTION (2)
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� Vertical irradiation channels and
thermal neutron flux: n.cm-2.s-1

+ Wet channels:
- Neutron trap at the core center:

2.23x1013

- Irradiation hole at cell 1-4:
1.07x1013

- 40 holes at rotary specimen rack:
3.85x1012

+ Dry channels:
- Pneumatic transfer tube at cell 7-1:

4.21x1012

- Pneumatic transfer tube at 13-2:
4.15x1012

MAIN CHARACTERISTICS

Neutron Trap

Graphite Reflector

Rotary Specimen Rack

LEU working core configuration from 
6/2022 to present with 96 LEU FAs

Fuel assembly

Shim and Safety rods
(Boron Carbide)
Automatic regulating 
rod (Stainless Steel)
Beryllium rod

Sample Irradiation 
Channels
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REACTOR DESCRIPTION (4)
� Fuel assembly WWR-M2 type:
+ Total long: 865 mm
+ Fuel meat part long: 600 mm
+ 3 layers (2 round tubes inside, 1 hexagonal 
outside)

HEU and LEU fuel

Parameter HEU LEU

Enrichment, % 36 19.75

Average mass of 235U in FA, g 40.20 49.70

Fuel meat composition U-Al Alloy UO2+Al

Uranium density of fuel meat, 
g/cm3

1.40 2.50

Cladding material Al alloy
(SAV-1)

Al alloy
(SAV-1)

Fuel element thickness (fuel 
meat and 2 cladding), mm

2.50 2.50

Fuel meat thickness, mm     0.70 0.94

Each cladding thickness, mm 0.90 0.78



REACTOR OPERATION
- Operation regimes:

+ Continuously at 500 kW (from 2012):
130 – 160 hrs /cycle, 1 or 2 cycles/month,
 1300 – 3000 hrs/year
+ 2019 to now: operation each week 85 to
100 hours
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During COVID pandemic 2019, 2020 and 2022 average I-131
activity produced on the DNRR about 800 to 1000 Ci/year.



REACTOR UTILIZATION

 Production of radioisotopes and radio-pharmaceuticals
for medical use, for agriculture and industry
application, as well as for research and education.

 Irradiation of samples for neutron activation analysis
(service for geology, oil field study, environmental
research, archaeology, etc., about 2,000
samples/year).

 Neutron beam researches (PGNAA, NR, nuclear data
measurement, etc.)

 Training of reactor operators and staffs.
 Practical works for students and teachers (from

Universities).
 Public information for nuclear power programme.
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Study on physics characteristics and parameters of the reactor to improve
technical management, operation and utilization of the Dalat Nuclear Research
Reactor:

Experiments on the DNRR:

- Neutron spectra and neutron flux distribution at irradiation positions and
FAs;

- Differential and integral worth of control rods;
-Temperature and power coefficients of reactivity and Xenon poisoning;
- Fuel surface temperatures at hottest FA in the core;
- Distribution of fuel burn-up;
- Behavior of fuel temperature during a reactor transient due to insertion of

allowable reactivity; etc.
Calculations related to Reactor Physics and Thermal Hydraulics:

- Neutronics, Thermal hydraulics and safety analysis for reactors;
- Fuel burn-up, core and fuel management strategy;
- Reactor calculation computer codes development.
Other research topics
- Full core conversion;
- Silicon doping testing on the DNRR;
- Enhancement radio-isotope production on the DNRR.
- Decommissioning study: plant, technique, etc…;
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REACTOR PHYSICS AND REACTOR TECHNOLOGIES



 Set-up the neutron filters at horizontal channels to extract
neutron beams from the reactor

 Based on these filters, thermal and quasi-monoenergetic
neutrons (25keV, 55 keV, 144 keV, >1.2 MeV, etc.) can be
used for nuclear data measurements, irradiation of
electronic components and other purposes (n,; n,2; n,n’
reactions)
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NEUTRON BEAMS RESEARCHES AND APPLICATIONS

- PGNAA facility at channel No. 4
- Measurement of Ko- factors to use
in PGNAA technique: Ko-factor of V,
Sc, Mn, Fe, Cd, Sm, Ni, Ga were
determined and used in PGNAA
- Measurement system for studying
(n,2) reactions was installed at
channel No.3
- PGNAA in BT.No. 2
- BT. No.1 wil be used for neutron

radiography



 Main radioisotopes & 
radiopharmaceuticals produced 
for medical purposes are: 
- 131I in Na131I solution and capsules
- Tc99m generators in Sodium-
(99mTc) pertechnetate 
- 32P applicator for skin disease 
therapeutics and 32P in injectable in 
orthophosphate solution
- 51Cr, 153Sm, etc. solution
- In-vivo labeled kits for Tc99m

- In-vitro T3, T4 kits
 Other radioactive tracers for 

sedimentology study, oil field 
study, and industry application 
can also be produced:

46Sc, 192Ir, 198Au, etc.
 Small sources:

60Co, 192Ir, etc.
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RADIOISOTOPE AND RADIOPHARMACEUTICAL PRODUCTION

Hot cell and I-131 production line

RI products of DNRI



- Radiopharmaceuticals produced
and supplied: Na131I solution,
Sodium-(99mTc) pertechnetate,
Sodium-(32P) orthophosphate, 131I-
Hippuran, 131I-MIBG, 153Sm-
EDTMP, 99mTc-MDP…
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Before treatment    After treatment

Whole Body Bone Imaging 

- 32P isotope applicators produced 
by nuclear reactions 
31P(n, )32P
- 32P solution produced by nuclear 
reactions 31P(n, p)32P



- Different methods are used for
element analysis:
. Instrumental NAA, including Ko-
method
. Radiochemical NAA
. Prompt gamma NAA
. Delayed NAA
. X-Ray Fluorenscene Analyze (XFA)
. HPLC, LSC
. AAS, GC, IC, UV-vis, etc.

- K-zero method for INAA has
been developed to analyse
airborne particulate samples for
investigation of air pollution;
crude oil samples and base
rock samples for oil field study.
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DEVELOPMENT OF ANALYTICAL TECHNIQUES

Pneumatic transfer system

Automatic sample changer system



ENHANCEMENT RADIOISOTOPE PRODUCTION 
I-131
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 Increasing demand of I-131 for hospitals in the country.
 Increasing activity of I-131 isotope and decreasing

operation time.
 Do not make the changing of neutron field inside the

reactor core and confirm the established operation
conditions.

Aluminum container
used for I-131
isotope production



ENHANCEMENT RADIOISOTOPE PRODUCTION 
I-131
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 Adding irradiation channels at cells 5-6 and 9-6: high
thermal neutron flux, symmetry, having beryllium for
moderation neutron, positions far from Shim rods, safety
rods hang on during reactor operation (September 2019).

 Loading additional irradiation target TeO2 containers:
from 9 (only at neutron trap) to 15 (neutron trap + 02
new channels)

 Accumulation neutron irradiation for containers: from
rotary specimen (1 or 2 weeks) to new irradiation
channels (1 week) and neutron trap ( 1 week) then take
out.

 The average activity of each container is about 4.5 to 5
Ci. Each month total I-131 activity is more than 100 Ci.



ENHANCEMENT RADIOISOTOPE PRODUCTION 
I-131
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Thermal neutron flux distribution of 
irradiation channels in axial

Neutron spectra of irradiation channels

Channel 1

Channel 2



FUEL LOADING PATTERNS FOR REFUELING
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 Assuring safety: shutdown margin (<-1%k/k), enough
excess reactivity for operation 1 to 3 years, assure of safe
operation as well as operation conditions.

 Using fuel as high as burn-up possible, extending operation
time while keeping all irradiation positions in the reactor
core (neutron trap, wet channels: 1-4, 5-6 and 9-6, dry
channels: 7-1 and 13-2).

 Forward 98 FAs core configurations for using effective
two new irradiation channels by keeping beryllium rods
around.

 Establishing 3 steps for refueling: each step will be loaded
2 FAs.



FUEL LOADING PATTERNS FOR REFUELING
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Adding reactivity ~ operation 
hours
Step 1: 1.25 $ ~ 5000 hs.
Step 2: 1.275 $ ~ 5100 hs.
Step 3: 1.125 $ ~ 4500 hs.

Shutdown margin reactivity
Step 1:  -5.4 %k/k
Step 2: -5.0 %k/k
Step 3: -4.4 % k/k



FUEL LOADING PATTERNS FOR REFUELING
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Position
Thermal neutron flux n/cm2.s

92 Fas 94 FAs 96 FAs 98 FAs

Neutron trap 8.26×1012 7.87×1012 7.29×1012 6.76×1012

2 new channels 7.28×1012 7.17×1012 6.86×1012 6.56×1012

1-4 channel 4.17×1012 4.16×1012 4.10×1012 4.03×1012

 Reducing the thermal neutron flux by 4.7%, 11.7%,
and 18.2% at the neutron trap for core configurations
of 94, 96, and 98 FAs, respectively.

 Reducing by 1.4%, 5.7%, and 9.9% at two new
irradiation channels with core configurations of 94, 96,
and 98 FAs, respectively.



FUEL LOADING PATTERNS FOR REFUELING
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 Maximum fuel cladding: 91.1oC, 91.0oC, 90.4oC and
87.1oC and ONB ratio: 1.43, 1.43, 1.44 and 1.53 for
core configurations of 92, 94, 96, and 98 FAs,
respectively (inlet temperature ~ 320C).
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CONCLUSIONS

- The Dalat NRR has been safely operated and
effectively utilized for 38 years;
- The main utilization of the Dalat NRR is for
radioisotope production, neutron activation analysis,
basic and applied research, nuclear education and
training;
- Adding two new irradiation channels combination
with accumulation neutron irradiation of containers,
the activity of I-131 can reach more than 100 Ci per
month;
- Establishing fuel loading patterns for refueling in
order to get the core configuration with 98 FAs to
sastisfy for safe operation and effectibe utilization.
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