International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR-2022) in Vienna, Austria at the International Atomic Energy Agency on October 2-5, 2022

Six-Year Experience of the WWR-K Reactor Operation with LEU Fuel

A.A. Shaimerdenov, Sh.Kh. Gizatulin, D.S. Sairanbayev, A.L. Martyshov and S.K. Sakhiyev

> The Institute of Nuclear Physics 1 Ibragimov str., 050032, Almaty, Kazakhstan

Historical overview (1)

WWR-K reactor conversion project

Historical overview (2)

WWR-K reactor conversion project

UPGRADES OF REACTOR SYSTEMS

I&C system

- Replacement of electronics
- Replacement of control rod drive mechanisms
- **Emergency cooling system**
- Replacement of pumps, some tubes and valves
- Installation of uninterrupted power supply
- **Emergency core sprinkling system**
- Replacement of sprinkler and pumps
- Primary cooling system
- Replacement of gaskets
- Inspection of vessel and piping
- Secondary cooling system
- Installation of additional new cooling towers
- Radiation monitoring system
- Complete replacement
- **Gas and aerosol emissions monitoring system**
- Complete replacement

I&C SYSTEM ELECTRONICS

<image>

Replacement of I&C cabinets

I&C SYSTEM ELECTRONICS

Replacement of control panel

I&C SYSTEM CONTROL ROD DRIVE MECHANISMS

CRD Mechanism includes drive, control rod and housing channel

□ Designed and manufactured by ŠKODA JS a.s. (Plzeň)

Delivered to Almaty in September, 2015

I&C SYSTEM CONTROL ROD DRIVE MECHANISMS

Dismantling of the reactor plug

Dismantling of old cabling in the reactor hall

EMERGENCY COOLING AND CORE SPRINKLING SYSTEM

- Replacement of pumps, valves and some piping
- Modification of one of two core sprinkling devices
- Installation of additional uninterrupted power supply

2 pumps, 45 m³/h each instead of 10 m³/h for HEU core

Batteries 30 KW, 6 hours

PRIMARY AND SECONDARY COOLING SYSTEMS

- > Inspection of tubing and reactor tank
- > Replacement of all gaskets
- Replacement of some valves
- > Installation of new water cooling towers

Reactor tank wall and weld

RADIATION, GAS AND AEROSOL EMISSIONS MONITORING SYSTEMS

The new systems providing:

➢Continuous monitoring of gamma dose rate in the reactor building

>Continuous monitoring of alpha, beta and gamma activity of aerosols, inert gases and iodine-131 in ventilation systems and reactor chimney

➢Continuous monitoring of gamma dose rate in cooling water (both primary and secondary circuits)

totally >50 detection devices

➢ Periodical measurement of alpha, beta and gamma activity in water

➤Alarm signals

➤Data collection and archiving

LEU CORE

Formation of the beryllium reflector

Neutron energy spectrum HEU versus LEU

 $imes 10^{13}$

Ось Х [см]

<0.625 eV / E_>0.1 MeV)	1.4 10 ¹⁴ / 5.9 10 ¹³	1.9 10 ¹⁴ / 8.0 10 ¹³	0.56/0.44
Periphery	5.6 10 ¹³ / 1.8 10 ¹³	8.9 10 ¹³ / 1.5 10 ¹³	0.62/0.72
<0.625 eV / E _n >0.1 MeV)			

(E

Poisoning of beryllium reflector (1)

$$\begin{array}{ll} {}^{9}_{4}Be\ (n,\alpha)\ {}^{6}_{2}He\ \\ {}^{6}_{2}He\ \xrightarrow{\beta-}\ {}^{6}_{3}Li, & {\rm T}_{1/2}=0,8\ {\rm sec}\ \\ {}^{6}_{3}Li\ (n,\alpha)\ {}^{3}_{1}H\ \\ {}^{3}_{1}He\ \xrightarrow{\beta-}\ {}^{3}_{2}He, & {\rm T}_{1/2}=12,33\ {\rm y}\ \\ {}^{3}_{2}He\ (n,p)\ {}^{3}_{1}H. \end{array}$$

Poisoning of beryllium reflector (2)

$$\begin{aligned} \frac{dN_{Be}}{dt} &= -N_{Be}\{RR\}_{Be} \\ \frac{dN_{Li}}{dt} &= N_{Be}\{RR\}_{Be} - N_{Li}\{RR\}_{Li} \\ \frac{dN_T}{dt} &= N_{Li}\{RR\}_{Li} - \lambda_T N_T + N_{He}\{RR\}_{He} \\ \frac{dN_T}{dt} &= N_{Li}\{RR\}_{Li} - \lambda_T N_T + N_{He}\{RR\}_{He} \\ \frac{dN_{He}}{dt} &= \lambda_T N_T - N_{He}\{RR\}_{He} \end{aligned}$$

Li-6: 2.3*10⁻⁶ at/barn*cm H-3: 6.6*10⁻⁶ at/barn*cm He-3: 7.8*10⁻⁸ at/barn*cm

Poisoning of beryllium reflector (3)

Dynamics of accumulation of H-3 and He-3 isotopes

Area I – the period of scheduled preventive maintenance of the reactor equipment

Area II – one of the regular operation cycles of the reactor at 6 MW

Area III – the reactor cooling time after the operation cycle.

New facilities at WWR-K reactor

Neutron activation analysis

Upgraded

Neutron activation analysis (NAA) section at the WWR-K reactor using modern automation systems and software:

- □ Short-lived isotope study
- □ Study on medium- and long-lived isotopes

At the WWR-K reactor, in a dry neutron beam with flux of 10¹¹ n cm⁻² s⁻¹, an automated pneumatic transport system is installed and operates. The system allows transporting samples (in special transport capsules) to the irradiation area and back, as well as from the irradiation area directly to the measuring equipment - a horizontal semiconductor gamma spectrometer made of high-purity germanium.

Neutron imaging facility

The facility is designed to study the internal structure of objects by non-destructive methods.

Neutron spectrum	Thermal	
Distance from moderator to diaphragm	3.5	
Distance from diaphragm to sample	7 m	
Beam diameter	20-100 mm	
L/D	350	
Field of view	20*20 cm ²	
Scintillator	⁶ LiF/ZnS: Ag	
CCD camera	HAMAMATSU-S12101	
	2048*2048 pixels	
Neutron flux at sample	1*10 ⁷ n/cm ² /s	
Neutron filter	Sapphire (thickness - 106 mm)	
Exposition time	20 s	

Complex for in-reactor gas release analysis (CIRRA)

Irradiation temperature: 50-1500 °C;
Measurement of elements mass: up to 100 a.e.m.;
Measurement method: determination of a separating fluid at the condition of vacuum extraction under uninterrupted exhaustion;

Temperature control method: by changing gas pressure in capsule gap and using electrical heater;

□ Heating method: radiation heating and electrical heater;

Features: the experimental facility can be connected to the experimental devices installed in any cell of the reactor core; irradiation parameters (temperature, pressure, the neutron flux relative density, etc.) are recorded and archived. Present irradiation activities at WWR-K reactor

R&D for Doping of Silicon

Neutron coloration of topaz

BLUE TOPAZ COLOR CHART

SKY BLUE

BABY SWISS

SWISS BLUE

LONDON BLUE

RI production

INP has a GMP certificate to produce radiopharmaceuticals.

Medical radioisotopes: □⁹⁹Mo/ ^{99m}Tc **1**¹³¹ Sodium iodide ¹³¹I: New radioisotopes produced after ¹⁹²Ir reactor conversion 130 Te(n, γ) 131 Te \rightarrow 131 I □¹⁹⁸Au Target: powder Industrial radioisotopes: Gold ¹⁹⁸Au: ¹⁹²Ir ¹⁹⁷Au(n,γ)¹⁹⁸Au NIFACTURIA Target: grains 6 70 4 20 Σ E SILCE 0 **1**005

In-reactor test of HTGR fuel compacts with SiC matrix

The study of properties of the irradiated SiC-matrix of the HTGR fuel element

Studies of functional materials of the fusion reactor

 Study of Solid Breeder Blanket Materials (lithium ceramics)
 Study of Neutron Breeder Materials (titanium beryllide)

In-situ gas release analysis is performing using CIRRA complex

Thank you for your attention!