



## Neutronic Simulation of Curved Fuel Plate with Flat Plate Geometry

C. Lu, A. Cuadra, P. Kohut, and <u>L.-Y. Cheng</u> Nuclear Science and Technology Department

RERTR 2022 – 42<sup>nd</sup> International Meeting on Reduced Enrichment for Research and Test Reactors Vienna, Austria October 3-5, 2022



### **Outline of Presentation**

- Objective demonstrate equivalence of curved-plate and flat-plate model
- NBSR fuel element geometry and neutronic model
- Single element curved fuel plate model
- Equivalent flat fuel plate model
- Comparison of results Keff at start up and through a fuel cycle
- Impact of increased fuel plate curvature
- Summary and conclusion

### The NBSR (1)

#### The NBSR

- Is a heavy-water (D<sub>2</sub>O)-moderated-andcooled tank-type reactor operating at the NIST
- Uses 30 MTR plate-type fuel elements in the core
- Operates at a nominal thermal power level of 20 MW
- Has elements with an overall length of 1.75 m. Upper and lower fuel sections are separated by a 17.78 cm gap to maximize the thermal neutron flux
- Has 17 fuel plates in each fuel section



#### The NBSR (2)

| N  |            |    | D1         |    | F1 |            | H1 |    | J1         |    |    |    |
|----|------------|----|------------|----|----|------------|----|----|------------|----|----|----|
| Д  |            | C2 |            | E2 |    | $\diamond$ |    | I2 |            | K2 |    |    |
|    | <b>B</b> 3 |    | $\diamond$ |    | F3 |            | H3 |    | $\diamond$ |    | L3 |    |
| A4 |            | C4 |            | E4 |    | $\diamond$ |    | I4 |            | K4 |    | M4 |
|    | B5         |    | $\diamond$ |    | F5 |            | H5 |    | $\diamond$ |    | L5 |    |
|    |            | C6 |            | E6 |    | <r></r>    | >  | I6 |            | K6 |    |    |
|    |            |    | D7         |    | F7 |            | H7 |    | J7         |    |    |    |

- Positions of the 30 fuel elements
- <R> represents the regulating rod
- <> represents the in-core irradiation thimbles (6 in total).

| N 8-1W 7-2W 7-2E 8-1E            |   |
|----------------------------------|---|
| 8-3W 7-5W $\bigcirc$ 7-5E 8-3E   |   |
| 7-3W <> 8-7W 8-7E <> 7-3E        |   |
| 7-1W 8-6W 7-7W $>$ 7-7E 8-6E 7-1 | Е |
| 8-4W <> 8-8W 8-8E <> 8-4E        |   |
| 7-4W 7-6W <r> 7-6E 7-4E</r>      |   |
| 8-2W 8-5W 8-5E 8-2E              |   |

- Fuel shuffling scheme
- The first number (7 or 8) -> total number of cycles
- The second number (1 to 8)-> current cycle
- ➤ W (west) and E (east)

### **The NBSR Neutronics Model Fuel Compositions**

- Axial and transverse zones
  Each fuel plate is broken into 14 axial meshes
- And 3 transverse meshes for calculating power distribution
- ≻ ~2x2 cm mesh
- Plate-by-plate material zones
- 180° symmetry
- Plates 1 and 17 -> same compositions
- Plates 2 and 16 -> same compositions
- Plates 3 15 -> same compositions
- > 10 fuel materials per fuel plate
- In total: 10 × 3 × 30 = 900 fuel materials



Axial composition zones and power meshes in a fuel plate

#### The Single-element Curved-fuel-plate Model (1)

- Model constructed according to the NIST LEU NBSR design drawings
- Two neutronics codes were used, Serpent 2 and MCNP 6.2



The (a) x-y, (b) y-z, and (c) x-z cross-sectional views of the Serpent 2 model of the reference NBSR fuel element (dimensions are shown in cm)

### The Single-element Curved-fuel-plate Model (2)

- Calculations of the fuel meat and fuel plate cross-sectional areas
- The fuel meat's degree of curvature
  (θ) 25° from the specified fuel meat
  x-y cross-sectional area (A<sub>fm</sub>) by
  solving

$$\theta/2 \times \left(R_{fm,convex}^2 - R_{fm,concave}^2\right) = A_{fm}$$

The fuel plate x-y cross-sectional area (A<sub>fp</sub>) was calculated by analytically integrating

$$\int_{-y_{SidePlate}}^{+y_{SidePlate}} \left( \sqrt{R_{fp,convex}^2 - y^2} - \sqrt{R_{fp,concave}^2 - y^2} \right) dy = A_{fp}$$



### The Single-element Equivalent Flat-fuel-plate Model

- To construct the NBSR single-element equivalent flat-fuel-plate model from the curved-fuel-plate model, the following parameters were explicitly conserved
- Fuel meat thickness
- Fuel meat volume per fuel plate
- Fuel plate thickness
- Fuel plate volume per fuel plate
- Coolant channel volume
- End plate volume
- Side plate volume per unit cell
- Side plate volume per fuel element
- The geometry modifications were made on the x-y plane only, while all the z locations remained unchanged



The process of developing the equivalent flatfuel-plate model

# Equivalence Between the NBSR Single-element Curved-fuel-plate and Equivalent Flat-fuel-plate Models (1)

- MCNP model for verification
- Version MCNP6.2
- Converted surface-by-surface and cell-by-cell from the Serpent 2 model
- ~500 lines in the flat-plate model
- ~1000 lines in the curved-plate model
- Agreement within statistical uncertainties (20 pcm), which demonstrates the equivalence between the two models at the equilibrium state.

k<sub>eff</sub> of the SU equilibrium curved-fuel-plate and equivalent flat-fuel-plate models

| Model                      | k <sub>eff</sub> | k <sub>eff</sub> uncertainty | $\Delta k_{eff}$ |  |
|----------------------------|------------------|------------------------------|------------------|--|
| Serpent curved             | 1.22473          | 0.00019                      | 0.00020          |  |
| Serpent<br>equivalent flat | 1.22453          | 0.00019                      |                  |  |
| MCNP curved                | 1.22465          | 0.00019                      |                  |  |
| MCNP<br>equivalent flat    | 1.22450          | 0.00018                      | 0.00015          |  |

# Equivalence Between the NBSR Single-element Curved-fuel-plate and Equivalent Flat-fuel-plate Models (2)

- k<sub>eff</sub> investigated through a postulated
  30-day cycle
- With a whole-element fission power of 0.6667 MW (20 MW / 30 elements)
- With finer steps at the BOL
- The absolute differences in Serpent and MCNP k<sub>eff</sub>
- Oscillated around zero
- Maximum ~60 pcm
- Arrived at around 20 pcm at the EOC
- Demonstrates the equivalence between the two models through a fuel cycle

Fresh fuel isotopic composition (LEU) 235U 238LJ Total Mo Mass in the element (g) 2154 383 1556 215 Mass density (g/cm<sup>3</sup>) 3.06 12.42 1.72 17.19 72.24 Weight fraction (%) 17.78 9.98 100



model - curved-fuel-plate model)

# Impact of the Fuel Plate Curvature on the Equivalence Between the Curved-fuel-plate and Equivalent Flat-fuel-plate Models (1)

- To discusses the validity of approaching the equivalence when larger plate curvatures are considered for
- Current RTR power upgrades
- Future RTR designs
- Increase in plate curvature realized by shortening the distance between the side plates
- Coolant channel volumes decreased
- Volumes of the other components of the fuel elements remained unchanged



The x-y cross-sectional views of the Serpent 2 models of the six fuel elements with different curvatures

## Impact of the Fuel Plate Curvature on the Equivalence Between the Curved-fuel-plate and Equivalent Flat-fuel-plate Models (2)

#### ✤ Findings

- k<sub>eff</sub> of the 25° fuel element design was approximated within 20 pcm
- The equivalent flat-fuel-plate model underpredicted the k<sub>eff</sub> when the fuel meat curvature became larger.
- The underprediction reached 0.737% for the 90° cases
- This would be 737 pcm if the 90° curved-fuel-plate model were critical



Comparison of the  $k_{eff}$  of the curved-fuel-plate models with those of the equivalent flat-fuel-plate models



#### Summary

- The equivalence between an NBSR LEU single-element equivalent flat-fuel-plate model and an NBSR LEU single-element curved-fuel-plate model was demonstrated with Serpent 2 and MCNP6.2.
- Study was extended to cover larger plate curvatures. Findings included
  - > k<sub>eff</sub> of the 25° fuel element design was approximated within 20 pcm
  - The equivalent flat-fuel-plate model underpredicted the k<sub>eff</sub> when the fuel meat curvature became larger.
  - $\succ$  The underprediction reached 0.737% for the 90° cases
  - which emphasized the importance of understanding the uncertainties caused by modeling curved fuel plates with equivalent flat fuel plates for neutronic calculations.
- Plan to build an NBSR LEU whole-core curved-fuel-plate model for future LEU NBSR analysis to reduce the uncertainties in k<sub>eff</sub> calculations.