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ABSTRACT 
 

To better support the Advanced Test Reactor (ATR) Low-enriched Uranium (LEU) 
conversion, a new ATR design basis accident safety analysis approach has been 
proposed which utilizes the Best-Estimate Plus Uncertainty (BEPU) code 
SASQUATCH.  SASQUATCH employs a non-parametric statistical method which 
allows analysts to calculate a pre-defined number of runs required to reach a specified 
probability and confidence threshold for a distributionless output, and grants the ability 
to control the sampling error using order statistics.  This presentation discusses the 
modernization of the ATR design-basis tools and evaluates the efficacy of the non-
parametric statistical approach proposed for the LEU safety basis relative to the current 
parametric approach outlined in the ATR Safety Analysis Report (SAR). 

 
 

1 Introduction 
 

Best estimate codes are used to provide realistic versus conservative predictions of reactor 
response to initiating events. In using best-estimate approaches, uncertainty in code predictions 
must still be accounted for.  Best-estimate plus uncertainty (BEPU) approaches are used to account 
for several sources of uncertainty, such as code models as well as uncertainties of plant and fuel 
parameters. 
 
Historically, the Advanced Test Reactor (ATR) has used the SINDA-SAMPLE code, a 1-D 
thermal/hydraulic (T/H) model of an ATR fuel plate, in evaluating T/H safety margins in the ATR 
Safety Analysis Report (SAR) (Reference 1).  As part of the safety analysis for incorporating U-
10Mo low-enriched uranium (LEU) fuel into the ATR, new statistical methods are being 
developed for safety analysis.  To support the implementation of these new methods, the 
Stochastic Analysis with SINDA for Quantification of Uncertainties in ATR Thermal Core 
Hydraulics (SASQUATCH) code is being developed at Idaho National Laboratory (INL) which 
includes a 3-D T/H model solver (Reference 2).   
 
The legacy SINDA-SAMPLE code utilizes a parametric (Gaussian) statistical method used to 



quantify uncertainties in code output. The current safety basis requires SINDA-SAMPLE to be 
executed 1,200 times to generate the Gaussian response functions of output margins with a high 
degree of fidelity.  The SASQUATCH code has been developed to include a more generalized, 
non-parametric statistical approach in order to justify fewer code runs, due to the increased 
computational cost of the 3-D solver, as well as to allow the output figure of merits (FOMs) to 
take any distribution form. 
 
Many BEPU approaches developed by the nuclear industry and accepted by the Nuclear 
Regulatory Commission (NRC) rely on the propagation of input uncertainties and make use of the 
Wilks' or other ordered statistical method to determine the number of code calculations required 
to satisfy an established tolerance level such as 95% probability with 95% confidence (95/95) 
(References 3, 4).  Accordingly, the calculated FOM that is compared with the corresponding 
acceptance criterion is often an upper or lower tolerance limit instead of the probability 
distribution of the output population.   

2 Introduction 
 
The one-sided Wilks’ non-parametric formula is used to predict the number of samples needed to 
bound a percentile of the output distribution (α) with a desired confidence (𝛽𝛽).  The user specifies 
the desired order (p) of the Wilks' equation, as specified in Equation (1) below (Reference 5): 
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where: 
  𝛼𝛼   =   The percentile of the output distribution 
  𝛽𝛽   =   The confidence level of the output distribution 
  N   =   The minimum number of code runs 
  p    =   The order of the output population  
 
The order states the number of code runs expected to lie in the “tail” of the distribution (i.e. beyond 
the 𝛼𝛼 percentile value chosen by the user), and therefore the pth largest, or smallest, output value 
is chosen as the limiting value.  This is intended to reduce the sampling error inherent in first-
order Wilks predictions (i.e., where p = 1). 
 
The purpose of this work is to evaluate the predicted amount of safety margin and repeatability of 
the results between the Wilks non-parametric and parametric approaches, with the goal of 
understanding the impact of changing statistical approaches on the safety basis of the ATR. 

3 Description of Approach 
 

A challenge with comparing these two approaches is that the parametric approach does not rely 
on making a statement about confidence and makes only an implicit statement about the 
probability level (i.e. 3σ represents the 99.7th percentile of a normal distribution but represents 
different probability levels for non-normal distributions).   In order to make an equal comparison 
between these two approaches, the following methodology is used (using the 95/95 level as an 



example): 
 
Parametric Approach 
 

1. Generate N samples from a standard normal distribution 
2. Using the N samples, determine the sample variance as an estimate for the population 

variance 
3. Determine the uncertainty in the sample variance based on the number of samples and the 

fact that the output distribution is normal (for a normal distribution, an analytical formula 
is available to estimate this uncertainty) 

4. Determine an estimate of the 95th percentile value of the distribution and its associated 
uncertainty to determine a 95/95 value. 

 
The above method simulates the current parametric approach used in the ATR SAR for the simple 
case of a single, normally-distributed variable, and extends it by additionally calculating the 95% 
confidence level of the output. 
   
Non-parametric approach 
 

1. Determine number of samples (N) required to estimate 95/95 value using the Wilks’ 
method. 

2. Run 10,000 N-sample runs to provide 10,000 estimates of the 95/95 value 
a. While for the parametric approach an analytical solution is available to estimate 

the uncertainty in the 95th percentile value (since it’s based on the standard 
deviation), the non-parametric approach has no equivalent analytical solution so an 
outer loop of sampling is performed to determine the spread of 95/95 estimates 
provided.  

3. Determine the expected value of the 95/95 from 10,000 trials 
 
Once both of these evaluations have been performed, their results can be compared to determine 
the difference in the amount of safety margin that is predicted by each and the repeatability of the 
results.  As shown in Fig. 1 below, using the parametric approach (left figure) the true value of the 
95th percentile is estimated, and repeating this multiple times will result in a spread of 95th 
percentile estimates around the “true” value.  The non-parametric results are shown to the right of 
Fig. 1, where a bound on the 95th percentile value is estimated with 95% confidence.  Therefore, 
as shown, when repeated many times, the non-parametric method will tend to over-estimate the 
95th percentile value relative to the “true” value. 
 



 
Fig. 1.  Example 95th Percentile Values and Spreads using the LEFT: Current Parametric 

Approach and RIGHT: Proposed Non-parametric Approach. 
 
Parametric Approach – Uncertainty in the Sample Variance 
 
If an analyst wishes to estimate the population variance of a probability distribution a typical 
approach is to generate N trials from that distribution and make an estimate of the population 
variance by computing the sample variance, namely: 
 

𝑠𝑠2 = 1
𝑛𝑛−1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
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Where s2 is the sample variance, n is the number of trials, xi is the value from the ith trial and 𝑥̅𝑥 is 
the mean value from all of the trials.  For a finite number of samples, there will be some variability 
in the value of s2.  Namely, if another set of n trials is run, a different value of s2 will be obtained 
due to the inherent variability in the underlying random variable.  
 
The uncertainty in s2 can be estimated based upon the number of trials.  This can be used to 
determine how good of an estimate s2 is for the population variance, σ2.  If the underlying 
distribution is normal, then the distribution of s2 can be determined analytically.  
 
In order to determine the uncertainty in the estimate of the population variance, first start with the 
distribution of the quantity ((𝑛𝑛−1)𝑠𝑠2

𝜎𝜎2
) which follows a chi-square distribution (𝜒𝜒2) with 𝑛𝑛 − 1 

degrees of freedom (see Reference 6): 
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Where n is the number of sample trials, s2 is the sample variance, σ2 is the population variance and 
𝜒𝜒2 is the chi-squared distribution with n-1 degrees of freedom.  What is actually sought is the 
distribution of the sample variance, s2, which can be determined using the properties of the chi-
squared distribution. 
 
In order to determine the distribution of s2, first consider a random variable X that follows a chi-
square distribution and a constant c > 0, so that: 
 

𝑋𝑋~𝜒𝜒2(𝜈𝜈)  (4) 
𝑐𝑐 > 0  (5) 

 
Where ν is the number of degrees of freedom in the chi-square distribution.  The distribution of 
the random variable cX is then (Reference 6): 
 

    𝑐𝑐𝑐𝑐~𝛤𝛤(𝑘𝑘 = 𝜈𝜈
2

,𝜃𝜃 = 2𝑐𝑐)  (6) 
 
Where Γ represents the gamma distribution with parameters k and θ.  Using this transformation 
property, the distribution of the sample variance can be determined: 
 

    𝑠𝑠2~𝛤𝛤 �𝑘𝑘 = 𝑛𝑛−1
2
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Hence, the sample variance follows a gamma distribution with parameter 𝑘𝑘 = 𝑛𝑛−1
2

 and 𝜃𝜃 = 2𝜎𝜎2

𝑛𝑛−1
.  

Using this result, the properties of the sample variance as a function of the number of trials can be 
determined.  For this investigation, an example case was used where the population variance was 
equal to 1 (σ2 = 1).  Using the R code, the distribution of the sample variance was determined for 
various trial sizes and the 95th percentile of the sample variance was determined for each trial size 
investigated.  The results of this evaluation are plotted in Fig. 2. 



 
Fig. 2. Change in Sample Variance Distribution vs. Number of Trials 

 
For n = 1200, s2

95 = 1.068 (the 95th percentile of the sample variance for N = 1200 samples).  Note 
that 1200 samples corresponds to the default number of trials specified in the legacy SINDA-
SAMPLE code for the parametric approach.  This implies that s95 ≈ 1.033 (the 95th percentile of 
the sample standard deviation for N=1200 samples)a.  This implies that if 1200 trials are performed 
there is approximately a 3% uncertainty in the computed standard deviation at the 95% confidence 
level. 
 
For a general situation where a set of N trials is performed and the sample standard variance is 
computed as a means to estimate the percentiles of an unknown output distribution, there is an 
unknown amount of confidence in the estimate of the percentile due to random variability in the 
variance estimate.  However, as the number of trials increases, the error in the sample standard 
variance significantly decreases.  Hence, while the confidence level is unknown this is of little 
practical significance since the error is expected to be small (only ~3% error in the sample standard 
deviation at the 95% level for 1200 trials). 
 
Non-parametric (Wilks) Tests 
 
Simple studies are performed and discussed in this section to better understand the implications 
of using Wilks’ method as compared to the sample variance method described previously.  The 
same example case was used, where an “inner” loop was used to generate N number of trials, and 
an “outer” loop was used to generate those N trials many times to understand the distribution of 
the tolerance values:  



  
1. Determine number of samples (N) required to estimate an upper “𝛼𝛼” percentile with “𝛽𝛽” 

percent confidence using Equation (1). The number of samples that are expected to lie 
outside of the “𝛼𝛼𝑡𝑡ℎ” percentile, and are therefore discarded, is controlled by setting the 
“order” value (𝑝𝑝). 

2. Use the R statistical package to monte-carlo sample results from a standard normal 
distribution (𝜇𝜇 = 0,𝜎𝜎 = 1).  As such, the ‘theoretical’ value for the 𝛼𝛼𝑡𝑡ℎ percentile is 
known exactly and can be compared to the Wilks estimated value. 

3. Run 10,000 N-sample runs to provide 10,000 estimates of the 𝛼𝛼/𝛽𝛽 value 
4. Determine the average of the 𝛼𝛼/𝛽𝛽 estimates from the 10,000 trials. 
5. Calculate the % error of the average value from the “true” 𝛼𝛼𝑡𝑡ℎ percentile of a standard 

normal distribution �% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛼𝛼/𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤������������� − 𝛼𝛼𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝛼𝛼𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∗ 100%�. 
 
Note that since the underlying distribution is known, we know what the true 95th percentile one-
sided upper tolerance limit should be.  Since the chosen distribution is a standard normal, the 95th 
percentile one-sided tolerance limit can be determined from Equation (8): 
 

0.95 =
1

√2𝜋𝜋
� 𝑒𝑒−

𝑡𝑡2
2 𝑑𝑑𝑑𝑑

𝑥𝑥

−∞
 =

1
2
�1 + erf �

𝑥𝑥
√2
�� (8) 

  
Solving for x yields that the 95th percentile upper tolerance bound for a standard normal (p95) is 
1.645.  Solving for x at the 99th percentile upper tolerance bound yields a value of 2.326. 
A total of twelve Wilks sensitivity tests were executed to predict either the 95th or 99th percentile 
value of the normal distribution:  1.)   95/95, p=1   2.) 95/99, p=1   3.) 9 9/95, p=1   4.) 99/99, 
p=1   5.) 95/95, p=2   6.) 95/95, p=3   7.) 95/95, p=4   8.) 95/95, p=5   9.) 99/95, p=2   10.) 99/95, 
p=3   11.) 99/95, p=4   12.) 99/95, p=5.   The number of runs required by these twelve sensitivity 
tests are calculated via Equation (1), and are summarized below in Table I.  These test loops 
described above were automated using the R statistical package. 

4 Results and Conclusions 
 
Table I below summarizes the results of the twelve Wilks non-parametric tests. As shown, the 
error of the mean Wilks α/β estimate is always positive (i.e. the percentile is over-predicted), and 
tends to be larger at the first-order (where no results are discarded).  The absolute error of the 
Wilks approach is shown to decrease monotonically over an increase in requested percentile or 
order, and increases monotonically with increased confidence.  The results of the Wilks method 
at the first order (p=1) specifically are shown to be substantially higher than the errors predicted 
using higher order approaches.  This study suggests that while the Wilks first-order 95/95 formula 
(a commonly used approach in the nuclear industry for BEPU methods) can be effective at 
quantifying uncertainty of results with as few as 59 code runs, the limiting values will tend to 
substantially over predict the 95th percentile, and may lead to overly-conservative results being 
generated.  
 



Table I. Summary of Results – Wilks’ Parametric Tests  

# of Trials Case Name Theoretical 
Value 

α/β estimate 
[percentile] 

% error 
(Wilks) 

59 (95/95) p=1 1.645 2.313 [99.97th] +40.6 
90 (95/99) p=1 1.645 2.471 [99.32th] +50.2 
299 (99/95) p=1 2.326 2.874 [99.80th] +23.6 
459 (99/99) p=1 2.326 3.011 [99.87th] +29.4 
93 (95/95) p=2 1.645 2.115 [98.27th] +28.6 
124 (95/95) p=3 1.645 2.034 [97.90th] +23.6 
153 (95/95) p=4 1.645 1.989 [97.67th] +20.9 
181 (95/95) p=5 1.645 1.954 [97.46th] +18.8 
473 (99/95) p=2 2.326 2.716 [99.67th] +16.8 
628 (99/95) p=3 2.326 2.643 [99.59th] +13.6 
773 (99/95) p=4 2.326 2.605 [99.54th] +12.0 
913 (99/95) p=5 2.326 2.576 [99.50th] +10.7 

 
The evaluation discussed here and summarized in Table I has demonstrated that Wilks’ formula 
is a robust approach that is comparable to analytical methods for similar levels of 
probability/confidence. This work has also shown that both methods are conservative at predicting 
upper percentile values, and the conservatism is reduced with increased number of samples.  The 
number of code runs is heavily dependent on the statistical probability requested of the output, 
while increased probability is shown to have only a moderate impact on reducing the relative error 
and variance of the results, especially at higher orders.   
 
The order of Wilks’ equation used to generate sample numbers is demonstrated to have the most 
impact on repeatability and accuracy of the results.  A trade-off is made to set the order at a 
respectable level where diminishing returns are expected for higher orders.  It is therefore 
recommended that the SASQUATCH code adopt the 4th order approach (95/95, p=4), which 
requires 153 samples (code runs) to meet the 95/95 probability/confidence threshold.  This 
approach is recommended to optimize the number of code runs with a relatively accurate, 
generally conservative, and repeatable set of output.  While the 95/95 parametric method used in 
SINDA-SAMPLE demonstrated an approximately +/-3% error in the computed output at 1,200 
runs, the 95/95, p=4 Wilk’s approach demonstrates a +21% error in the computed output.  This is 
because, on average, the 4th order 95/95 approach will in fact estimate the 97.7th percentile.  This 
is considered an acceptable increase in conservatism in exchange for the marked reduction in 
number of samples required. 
 
It is therefore recommended that the 153 code runs be applied for safety basis analyses using 
SASQUATCH to generate safety margin data at the 95th percentile with 95% confidence. 
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