Evaluation of Effect of Post-Fabrication Voids on the Performance of C2TWP Mini-Plates

W. Mohamed\textsuperscript{1}, H.S. Roh\textsuperscript{1}, H. Ozaltun\textsuperscript{2}, J. Smith\textsuperscript{2}, J. Nielsen\textsuperscript{2}, I. Glagolenko\textsuperscript{2}, G. Hofman\textsuperscript{1}, B. Stepnik\textsuperscript{3}, H. Breitkreutz\textsuperscript{4} and A.M. Yacout\textsuperscript{1}

\textsuperscript{1} Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60540  
\textsuperscript{2} Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID 83402  
\textsuperscript{3} AREVA NP, CERCA, 10 rue Julieette Réamier 69006 Cedex Lyon, France  
\textsuperscript{4} Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany

ABSTRACT

Finite element analysis (FEA) was used to evaluate potential effect of post-fabrication voids (100-200 µm) observed in C2TWP mini-plates to be included in the EMPIRE experiment. The Al-alloy cladding in these plates is bonded to the fuel foils using a proprietary technique (C2TWP) that is currently under development and fundamentally different from the Hot Isostatic Press method used for cladding monolithic fuel in the US. Geometrical models were developed for C2TWP mini-plates with various voids size and stresses were determined in all cases. FEA results revealed that the presence of voids caused a relatively low increase in normal stresses near the void region compared to mini-plates having perfectly covered edges. In all cases modeled, the observed increased normal stresses are well below the ultimate strength of Al-alloys. Thus, it was concluded that the performance of the C2TWP mini-plates will not deviate significantly from the performance of the plates with perfectly covered edges.