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M.  M. Bretscher

RERTR Program
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ABSTRACT

     Simple diffusion theory cannot be used to evaluate control rod worths in thermal
reactors because of steep flux gradients that occur within the absorber material.  However,
reliable control rod worths can be calculated within the framework of diffusion theory if
the control material is characterized by a set of mesh-dependent effective diffusion
parameters or if group-dependent current-to-flux ratios are specified on the absorber
surface.

     For thin slab absorbers the effective diffusion parameters are functions of a pair of
blackness coefficients.  Methods for calculating these blackness coefficients in the P1, P3

and P5 approximations, with and without scattering, are discussed, and equations for the
corresponding mesh-dependent effective diffusion parameters are derived.

     For control elements whose geometry does not permit a thin slab treatment, other
methods are needed for determining the effective diffusion parameters.  One such method,
based on reaction rate ratios, is presented.

     An alternate method for calculating control rod worths isolates the absorber from the
diffusion-theory calculation by specifying group-dependent current-to-flux ratios on the
absorber surface.  Neutron transport calculations are used to determine these current-to-
flux ratio internal boundary conditions subject to limits set by radius-dependent black
absorber rods.

     These methods are illustrated for a number of absorber materials and geometries.
Computed control rod worths are compared with detailed Monte Carlo calculations and,
where possible, with experimental measurements.  In general, control rod worths based on
these diffusion-theory methods are found to be consistent with those from Monte Carlo
calculations and with measured values.
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1.  INTRODUCTION

     Research reactor control rods are composed of materials which strongly absorb
thermal neutrons.  In such materials the low-energy neutron flux varies rapidly as a
function of position, which causes steep flux gradients near the absorber surface.  Under
these conditions Fick’s law of diffusion is invalid, and so, without special methods,
diffusion theory cannot be used to calculate control rod worths in thermal research
reactors.  Higher order methods, such as Monte Carlo techniques, are commonly used for
this purpose.  However, reasonably accurate control rod worths can be computed within
the framework of diffusion theory by characterizing the absorber material by means of a
group-dependent set of effective diffusion parameters (Deff and Σa-eff) or by specifying
group-dependent neutron current-to-flux ratios (i.e. internal boundary conditions) on the
absorber surface.

     The purpose of this paper is to show how effective diffusion parameters and internal
boundary conditions can be calculated.  Using these techniques, control rod worths are
computed and compared with results of detailed Monte Carlo calculations and with
measured values.

2.  EFFECTIVE DIFFUSION PARAMETERS

     Methods used to determine effective diffusion parameters depend on the geometry of
the absorber.  If the control rod can be described by one or more thin slab absorbers (i.e.
thickness << transverse dimensions), effective diffusion parameters can be written in terms
of a pair of “blackness coefficients” which are defined below.  For non-slab-like absorbers
effective diffusion parameters can be determined from a reaction rate ratio matching
requirement.  In either case, the effective diffusion parameters depend on the neutronic
properties of the absorber and on the mesh structure within it, but not on the outside
media.  For those high energy groups for which Σs >> Σa for the control material,  normal
diffusion theory is valid so the determination of effective diffusion parameters is
unnecessary for these groups.

2.1  Thin Slab Geometry

     For control materials in the shape of thin slabs, mesh-dependent effective diffusion
parameters can be expressed in terms of a pair of energy-dependent blackness coefficients,
α and β.  For an absorber slab of thickness τ the blackness coefficients are defined by the
equations

               α ≡ (Jl + Jr) / (φl + φr),  and  β ≡ (Jl - Jr) / (φl - φr)
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where φ and J are the asymptotic neutron fluxes and currents into the slab on the left-hand
and right-hand surfaces of the slab.  Because of these definitions, the blackness
coefficients depend only on the properties of the absorber slab.

2.1.1   Blackness Coefficients

     Blackness theory1-3 provides a mechanism for evaluating the blackness coefficients.
The theory assumes:
 

1. The coolant slab is uniform and of infinite lateral extent.
 
2. There are no neutron sources within the control slab due to fission, n2n, or

scattering from other energies.
 
3. Neutron scattering within the slab is isotropic.
 
4. Diffusion theory is applicable to all regions within the reactor except for the

control slab.
 
5. Blackness coefficients evaluated for infinite slabs are applicable to finite slabs

whose transverse dimensions are very large relative to the thickness.

Because of the first two assumptions, the one-dimensional monoenergetic Boltzmann
transport equation can be solved by expanding the angular flux within the slab into
spherical harmonics in order to determine surface fluxes and currents.  The fourth
assumption is normally violated at locations just outside a strongly absorbing slab.
Therefore, the flux shape determined by using blackness-modified diffusion parameters is
likely to be erroneous at such locations.  The last assumption is necessary because
quantities analogous to α and β for finite slabs do not exist.  However, it is reasonable to
expect this assumption to provide a good approximation.

     To illustrate how the blackness coefficients are calculated, α and β are evaluated in the
P1 approximation, with and without scattering, in the Appendix.  Although the algebra is
lengthy, the Appendix outlines how the same methods are extended to calculate the
blackness coefficients in the P3 and P5 approximations.  More details on these higher order
approximations are given in Ref. 3.  For very strong absorbers (Σa / Σs >> 1) a modified
form of the zero-scatter P1 approximation, namely

          α0m(P1) = 0.4692 [1 - 2E3(Σaτ)] / [1 + 3E4(Σaτ)]

          β0m(P1) = 0.4692 [1 + 2E3(Σaτ)] / [1 - 3E4(Σaτ)] ,
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gives good results.  In these equations E3 and E4 are the exponential integrals of the
absorber thickness expressed in absorption mean free paths.  The blackness coefficients,
especially β, are very sensitive to neutron scattering and so these approximations fail when
scattering becomes significant.  In such cases the coefficients should be evaluated in the P5

approximation.

     Broad-group blackness coefficients are most accurate if they are obtained by flux-
weighting the fine-group values.  Thus,

               < α> = ∑i αi (φl + φr)i / ∑i (φl + φr)i

               < β> = ∑i βi (φl - φr)i / ∑i (φl - φr)i

where the summations are over the number of fine groups which make up the broad
group.  The fine group surface fluxes (φl and φr) may be obtained from a one-dimensional
P1, S8 transport calculation.

     It is usually sufficient to calculate <α> and <β> only for the thermal and epithermal
groups.  Normally, blackness coefficients for the fast groups are not needed because for
these energies Σs >> Σa for the absorber and so normal diffusion theory applies without
any need for effective diffusion parameters.

     2.1.2  Effective Diffusion Parameters

     The α and β blackness coefficients form a pair of internal boundary conditions
applicable on the surfaces of the absorber slab.  However, most diffusion codes are not
programmed to handle internal boundary conditions of this type.  Therefore, it is
convenient to determine a set of effective diffusion parameters (Deff and Σa-eff) in terms of
the blackness coefficients which preserve the current-to-flux ratios on each side of the
absorber slab.  These effective diffusion parameters depend on the mesh interval size h and
therefore allow the use of a very course mesh in the absorber for the diffusion-theory
calculations.

     Expressions for the effective diffusion parameters are derived in the Appendix,  so only
the results are given here.  For the case where the diffusion code, such as DIF3D4,
determines fluxes at the center of the mesh intervals,
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               k = (1/ τ) [ β1/2 + α1/2 ] / [ β1/2 - α1/2 ] ,

               Deff = (h/2) (α + β) [(1 + cosh kh)/2] (tanh kτ) / (sinh kh) , and

               Σa-eff = Deff [cosh kh - 1] / h2 .

The equations for k and Σa-eff are also valid for use in diffusion codes which calculate
fluxes on the mesh boundaries.  For this case, however, the expression for Deff becomes
(see Ref. 3)

               Deff = (h/2) (α + β) (tanh kτ) / (sinh kh)

For an effectively black absorber α → β → 0.4692 and k tends to infinity.  Effective
diffusion parameters can be obtained for this limiting case by setting kτ equal to an
arbitrarily large, but finite, value such as kτ = 10.  In this limit the effective diffusion
parameters corresponding to mesh-centered fluxes reduce to

               Deff = ατ/(2n)  and  Σa-eff = [αn/(4τ)] ekτ/n

where n=1,2,... determines the mesh interval size h = τ/n.

     2.1.3  Examples

     Blackness coefficients and effective diffusion parameters have been evaluated for
several control materials commonly used in research reactors in slab geometry.  Tables 1-3
summarize the results for slabs of natural cadmium, a Ag-In-Cd alloy, and natural hafnium.
The thickness of the cadmium sheet (τ = 0.1016 cm) corresponds to that used in the 30-
MW Oak Ridge Research Reactor (now shut down) and the Swedish R2 Reactor.  Flat
blades of the Ag-In-Cd alloy were assumed to be 0.310 cm thick with a density of 9.32
g/cm3 and a composition of 4.9 wt % Cd, 80.5 wt % Ag, and 14.6 wt % In.  The natural
hafnium slab is 0.50 cm thick, which equals the thickness of the square hafnium annulus
used in the control elements of Japan’s JRR-3 reactor.

     For each of these materials broad-group blackness coefficients were evaluated in the
P1, P3 and P5 approximations.  Fine-group flux weighting was used to determine the P5

average values <α(P5)> and <β(P5)> and the modified zero-scattering P1 average values
<α0m(P1)> and <β0m(P1)>.  For comparison purposes, Table 1 also includes the unmodified
zero-scattering P5 average values <α0(P5)> and <β0(P5)>.  Note that the effective diffusion
parameters (Deff and Σa-eff) given in these tables depend on the mesh interval size h and are
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TABLE 1
BROAD GROUP BLACKNESS COEFFICIENTS AND EFFECTIVE DIFFUSION

PARAMETERS
FOR A CADMIUM SLAB OF THICKNESS  τ = 0.1016 cm

Quantity Group 1 Group 2 Group 3 Group 4 Group 5

Eu(eV)
Σa/Σs

D(cm)
Σa(cm-1)
L(cm)

τ/L
Σaτ

No. of Fine Groups

α(P1)
α(P3)
α(P5)

<α(P5)>
<αo(P5)>
<αom(P1)>

β(P1)
β(P3)
β(P5)

<β(P5)>
<βo(P5)>
<βom(P1)>

EDP’s*
h = τ:
Deff

Σa-eff

h = τ/2:
Deff

Σa-eff

1.0E+07
5.7044E-03
2.2107E+00
1.3852E-03

39.95
0.0025

1.4074E-04

1

7.2308E-05
7.2304E-05
7.2304E-05
7.2304E-05
7.0502E-05
6.5998E-05

2.6866E+01
2.6868E+01
2.6868E+01
2.6868E+01
4.7447E+03
4.4454E+03

1.3649E+00
1.4233E-03

1.3649E+00
1.4233E-03

8.208E+5
3.5980E-02
1.2857E+00
1.1291E-02

10.67
0.0095

1.1472E-03

1

5.7402E-04
5.7374E-04
5.7371E-04
5.7371E-04
5.7111E-04
5.3636E-04

2.0183E+01
2.0183E+01
2.0183E+01
2.0183E+01
5.8022E+02
5.4537E+02

1.0253E+00
1.1294E-02

1.0253E+00
1.1294E-02

5.531E+03
4.6885E-01
6.6445E-01
1.6113E-01

2.031
0.0500

1.6371E-02

32

8.0056E-03
7.9567E-03
7.9516E-03
7.2171E-03
7.1182E-03
6.8076E-03

1.3004E+01
1.3002E+01
1.3002E+01
1.3795E+01
1.8903E+02
1.7754E+02

7.0079E-01
1.4214E-01

7.0070E-01
1.4210E-01

1.855
3.3797E+00
4.5743E-01
8.1813E-01

0.7477
0.1359

8.3122E-02

14

3.8077E-02
3.7162E-02
3.7089E-02
3.6251E-02
3.5965E-02
3.4988E-02

6.2145E+00
6.2051E+00
6.2034E+00
8.6248E+00
1.5660E+01
1.4706E+01

4.3814E-01
7.1662E-01

4.3768E-01
7.1511E-01

0.6249
2.7866E+02
2.6851E-02
6.7436E+01

0.01995
5.093

6.8515E+00

21

4.9904E-01
4.7188E-01
4.6980E-01
4.4449E-01
4.4473E-01
4.4368E-01

4.9955E-01
4.7241E-01
4.7035E-01
4.7099E-01
4.7134E-01
4.6984E-01

2.3926E-02
1.5556E+02

1.4800E-02
3.6893E+01

*Effective Diffusion Parameters ( EDP’s) based on <α(P5)> and <β(P5)> values.
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TABLE 2
BROAD GROUP BLACKNESS COEFFICIENTS AND EFFECTIVE DIFFUSION

PARAMETERS
FOR A Ag-In-Cd SLAB OF THICKNESS  τ = 0.310 cm

Quantity Group 1 Group 2 Group 3 Group 4 Group 5

Eu(eV)
Σa/Σs

D(cm)
Σa(cm-1)
L(cm)

τ/L
Σaτ

No. of Fine Groups

α(P1)
α(P3)
α(P5)

<α(P5)>
<αom(P1)>

β(P1)
β(P3)
β(P5)

<β(P5)>
<βom(P1)>

h = τ:
Deff

Σa-eff

h = τ/2:
Deff

Σa-eff

1.0E+07
O.01388

1.8067E+00
3.8027E-03

21.80
0.0142

1.1788E-03

1

5.8971E-04
5.8948E-04
5.8946E-04
5.8946E-04
5.5110E-04

7.7410E+00
7.7410E+00
7.7410E+00
7.7410E+00
5.3069E+02

1.1998+00
3.8032E-03

1.1998E+00
3.8031E-03

8.208E+5
0.06620

9.6634E-01
2.6855E-02

5.999
0.0517

8.3250E-03

1

4.1294E-03
4.1191E-03
4.1184E-03
4.1184E-03
3.8370E-03

4.9746E+00
4.9738E+00
4.9736E+00
4.9736E+00
7.5151E+01

7.7091E-01
2.6592E-02

7.7075E-01
2.6581E-02

5.531E+03
0.9549

3.0846E-01
5.9217E-01

0.7217
0.4295

1.8357E-01

32

8.0743E-02
7.8255E-02
7.8052E-02
5.3232E-02
5.2921E-02

1.8153E+00
1.8052E+00
1.8037E+00
2.4627E+00
8.2595E+00

3.8713E-01
3.5102E-01

3.7964E-01
3.4721E-01

1.855
9.2358

1.2755E-01
3.9909E+00

0.1788
1.7338

1.2372E+00

14

3.5099E-01
3.2980E-01
3.2762E-01
3.0963E-01
3.0990E-01

6.6227E-01
6.3920E-01
6.3730E-01
7.1679E-01
7.8897E-01

1.1110E-01
3.5168E+00

9.7419E-02
2.6505E+00

0.6249
14.916

1.0813E-01
6.5510E+00

0.1285
2.4125

2.0308E+00

21

4.3407E-01
4.0888E-01
4.0657E-01
3.8747E-01
3.9047E-01

5.4799E-01
5.2324E-01
5.2151E-01
5.4003E-01
5.6342E-01

8.3704E-02
8.8489E+00

6.4097E-02
4.7032E+00
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TABLE 3
BROAD GROUP BLACKNESS COEFFICIENTS AND EFFECTIVE DIFFUSION

PARAMETERS
FOR A HAFNIUM SLAB OF THICKNESS  τ = 0.500 cm

Quantity Group 1 Group 2 Group 3 Group 4 Group 5

Eu(eV)
Σa/Σs

D(cm)
Σa(cm-1)
L(cm)

τ/L
Σaτ

No. of Fine Groups

α(P1)
α(P3)
α(P5)

<α(P5)>
<αom(P1)>

β(P1)
β(P3)
β(P5)

<β(P5)>
<βom(P1)>

h = τ:
Deff

Σa-eff

h = τ/2:
Deff

Σa-eff

1.0E+07
O.01075

1.1018E+00
3.2572E-03

18.39
0.0272

1.16286-03

1

8.1451E-04
8.1413E-04
8.1410E-04
8.1410E-04
7.6051E-04

4.3542E+00
4.3541E+00
4.3541E+00
4.3541E+00
3.8416E+02

1.0885E+00
3.2570E-03

1.0885E+00
3.2567E-03

8.208E+5
0.05192

7.5354E-01
2.2812E-02

5.747
0.0870

1.1406E-02

1

5.6485E-03
5.6328E-03
5.6316E-03
5.6316E-03
5.2312E-03

2.8878E+00
2.8869E+00
2.8868E+00
2.8868E+00
5.4857E+01

7.2169E-01
2.2570E-02

7.2134E-01
2.2548E-02

5.531E+03
0.6362

3.9258E-01
4.7998E-01

0.9044
0.5529

2.3999E-01

32

1.0356E-01
1.0046E-01
1.0016E-01
1.0208E-01
1.0070E-01

1.1282E+00
1.1191E+00
1.1179E+00
1.2135E+00
4.8787E+00

3.0337E-01
4.4583E-01

2.9685E-01
4.2667E-01

1.855
11.1581

2.1924E-01
5.2020E+00

0.2052
2.436

2.6010E+00

14

4.5802E-01
4.3288E-01
4.3074E-01
4.1096E-01
4.1707E-01

5.1022E-01
4.8566E-01
4.8394E-01
5.1162E-01
5.3505E-01

1.2790E-01
8.3555E+00

9.2318E-02
3.7061E+00

0.6249
6.5293

3.1425E-01
2.9832E+00

0.3246
1.540

1.4916E+00

21

3.8305E-01
3.6102E-01
3.5886E-01
3.5165E-01
3.5647E-01

5.8520E-01
5.6261E-01
5.6093E-01
5.7023E-01
6.2356E-01

1.4256E-01
3.6695E+00

1.1541E-01
2.2719E+00
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based on the <α(P5)> and <β(P5)> values.  Recall that the effective diffusion parameters,
and the blackness coefficients upon which they depend, are functions only of the
properties of the slab and are independent of the surrounding media.

     Unmodified diffusion parameters (D and  Σa) may be used for those groups for which
Σa / Σs << 1 and/or τ / L <<1, where L is the diffusion length of neutrons in the absorber.
On this basis effective diffusion parameters are needed for groups 3-5 for slabs of natural
hafnium and the Ag-In-Cd alloy.  For cadmium, however, effective diffusion parameters
are really needed only for group 5.  For this group the thickness of the cadmium sheet in
absorption mean free paths (Σaτ) is about 5.1, which means that the cadmium sheet
absorbs over 99% of all the incident group 5 neutrons (i.e. group 5 is approximately
black).  Table 1 shows that in the P5 approximation α(P5) = 0.4698, which nearly equals
the black limit of 0.4692.  This unique property of cadmium results from the very large
absorption resonance at about 0.18 eV.

     These tables also show that for Σaτ > 1 the modified-zero-scattering approximation
gives remarkably good values for the blackness coefficients.  Even for Σaτ as low as about
0.2,  <α0m(P1)>  is quite satisfactory.  However, in this range of Σaτ values  <β0m(P1)>  is
badly over-calculated because of its sensitivity to neutron scattering effects.  Where
applicable, however, the modified-zero-scattering approximation is very useful because
these blackness coefficients can be easily calculated.

2.2  Other Geometries

     For control rod geometries which cannot be approximated by a one-dimensional slab
treatment, quantities analogous to the α and β blackness coefficients do not exist so other
methods are needed to determine effective diffusion parameters.  Since analytical
expressions for the effective diffusion parameters cannot be obtained for multi-dimensional
control rods, an iterative technique is used to determine Deff and Σa-eff .  It is assumed that
a set of effective diffusion parameters can be found which depend on the nuclear cross
sections of the absorber, its dimensions, and the mesh spacing used in diffusion-theory
calculations to describe the control rod, but which are independent of the environment
outside the lumped absorber.

     To determine the effective diffusion parameters a control cell characteristic of the rod
and its surroundings is defined.  This cell, with reflective boundary conditions, explicitly
models the lumped absorber, its immediate environment, and a surrounding fuel region.
For this cell Monte Carlo calculations are performed to determine for each energy group
the capture rate in the absorber lump relative to the fission rate in the fuel region.  This
same cell is used for diffusion-theory calculations choosing the same mesh structure in the
absorber which will be used later for global diffusion calculations.  Beginning with the
highest energy group, D and Σa values are adjusted in a series of diffusion-theory
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calculations until the absorption rate in the absorber lump relative to the fission rate in the
surrounding fuel region equals that obtained from the Monte Carlo calculation.  This
process is repeated on a group-by-group basis.  Effective diffusion parameters are those
adjusted values of D and Σa which result in a match to the Monte Carlo reaction rate
ratios.  An arbitrary relationship between  Deff and Σa-eff may be defined such as

                    Deff = [3 Σa-eff ]
 -1 .

As for the slab case, effective diffusion parameters are not needed for those high-energy
groups for which Σs >> Σa.

     This method is commonly used by the University of Michigan in two-group
calculations of the worths of the shim-safety rods in the Ford Nuclear Reactor (FNR)5.
However, it is a rather laborious procedure when more energy groups are used in the
diffusion-theory calculations. Therefore, other procedures, described below, are normally
used in the ANL-RERTR program to calculate control rod worths within the framework
of diffusion theory.

3.  INTERNAL BOUNDARY CONDITIONS

     Since diffusion theory fails near the surface of a strong neutron absorber, a pair of
group- and mesh-dependent effective diffusion parameters can be used to calculate
reactivity effects of the absorber.  An alternate approach is to isolate the absorber from the
diffusion-theory calculation by applying group-dependent internal boundary conditions at
the absorber surface.

     The internal boundary condition, A, is of the form

                    D φ′  +  A φ  =  0

where φ′ is the normal derivative of the flux at the absorber surface.  Thus,

                    A = -D φ′ / φ = J / φ = D / d = λtr / 3 d

where   d ≡ extrapolation distance into the absorber,
           λtr ≡ the neutron transport mean free path in the diffusing medium, and
            A ≡ the internal boundary condition defined as the current-to-flux ratio at the
                  absorber surface.

Transport calculations are used to determine the group-dependent current-to-flux ratios.
It is assumed that the material-dependent internal boundary condition is the same at every
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point on the surface of the absorber.  However, current-to-flux ratios used in diffusion-
theory calculations should never exceed the black absorber limit.
.
3.1  Current-to-Flux Ratios for Black Absorbers

      For a plane black boundary (i.e. no return neutrons) the extrapolation distance has the
value d = 0.7104λtr which corresponds to a current-to-flux ratio A = λtr / 3d = 0.4692.
The extrapolation distance for a black cylindrical rod is a function of the radius, R, and the
transport mean free path, λtr , of neutrons in the surrounding medium.  Figure 1 is a plot of
the current-to-flux ratio evaluated at the surface of a black cylindrical absorber of infinite
length as a function of R/λtr .These black-rod internal boundary conditions were calculated
from extrapolation distances given in Ref. 6.  Note that in the limit as R/λtr approaches
infinity, the current-to-flux ratio becomes that of a planar black boundary.  Using the least
squares process, data from Fig. 1 were fit to a polynomial of the form

                    (J/ φ)black = ∑ i  ai (R/λ tr)
i

where the coefficients are:

                    i               ai

                    0      2.49993E-01
                    1      2.50031E-01
                    2     -1.87744E-01
                    3      7.70505E-02
                    4     -1.56659E-02
                    5      1.00392E-03
                    6      1.17961E-04
                    7     -1.52381E-05

3.2  Current-to-Flux Ratios for Non-Black Absorbers

     For non-black absorber materials the surface current-to-flux ratios are energy-
dependent.  For this case the internal boundary conditions can be calculated from a
discrete-ordinate transport calculation using finely spaced mesh intervals in order to
determine group-dependent fluxes and currents at the surface of the absorber.  If any of
the values exceed the values given in Fig. 1, they should be replaced with the black
absorber limits.  Internal boundary conditions are not needed for those upper energy
groups for which Σa / Σs << 1 and/or τ / L << 1 where L is the diffusion length and τ is the
minimum transverse dimension of the absorber material.
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     For the very special case of an absorber slab placed within a symmetric neutron field,
φl = φr and Jl = Jr.  The surface current-to-flux ratio then equals the α blackness coefficient
discussed earlier.

INTERNAL BOUNDARY CONDITIONS FOR BLACK CONTROL RODS

Rod Radius/Surrounding Transport MFP

Figure 1
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3.3  Example

     Until recently, the shim-safety rods used in the University of Michigan Ford Nuclear
Reactor consisted of a borated stainless steel material.  Table 4 (from Ref. 5) gives the
transverse dimensions and composition of these shim-safety rods.  To obtain a set of
internal boundary conditions, the rod, the surrounding moderator, and fuel were
represented in cylindrical geometry.  Since most thermal neutrons are absorbed near the
surface of the shim-safety rod, the radius of the “equivalent” cylindrical rod was chosen so
as to preserve the surface area of the actual rod.  This cylindrical rod was divided into
three concentric zones with the outer and middle zones having thicknesses of 1 mm and
3 mm, respectively.  Full-density borated stainless steel was used in the outer and middle
zones, but the density in the inner zone was reduced so as to preserve the total amount of
material in the equivalent rod.  Multigroup cross sections were generated for each control
zone and for all the other regions outside the shim rod using the WIMS-D4M code7.  One-
dimensional P1 S8 transport calculations were performed with the TWODANT code8 in
order to determine group-dependent current-to-flux ratios on the surface of the equivalent
cylindrical rod.  Table 5 summarizes the current-to-flux ratios obtained in this manner.
This table also shows the internal boundary conditions calculated for the TiB2(95% 10B)-
Al6351 shim rods now used in the Ford Nuclear Reactor.  Based on Σa / Σs, τ / L, and Σaτ
values, where τ is the minimum thickness of the actual shim rod, Table 5 shows that
internal boundary conditions are not needed for the fast groups 1 and 2 and that the rod is
black to group-4 neutrons.  Therefore, the polynomial fit to Fig. 1 was used to determine
the group-4 current-to-flux ratios.

4.  CONTROL ROD WORTH EVALUATIONS

     Because of their strong neutron-absorbing character, special methods are needed to
determine control rod worths in diffusion theory calculations.  As discussed in the above
paragraphs, one such method is to determine a pair of group- and mesh-dependent
effective diffusion parameters for the absorber rod.  An alternate method is to isolate the
absorber material from the diffusion calculation by applying a group-dependent set of
internal boundary conditions (current-to-flux ratios) at the absorber surface.  Using these
methods, control rod worths have been calculated for several control rod materials.
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TABLE 4
COMPOSITION AND GEOMETRY OF THE FNR SHIM-SAFETY RODS

Composition (atoms/b-cm)

Nuclide Borated Stainless Steel TiB2(95%10B)-Al6351
10B
11B
Mg
Al
Si
Ti
V
Cr
Mn
Fe
Ni
Cu
Zn

1.108E-3
5.184-3

1.640E-2

5.644E-2
1.130E-2

1.5749E-3
7.5390E-5
4.0978E-4
5.7161E-2
5.9104E-4
1.0158E-3
1.6293E-5
1.5962E-5
1.8129E-4
1.4862E-4
1.4131E-5
2.6122E-5
5.0734E-5

Geometry

Dimensions (cm) Borated SS TiB2-Al6351

Effective Length

Rectangular-Like Cross Section:
     Major Axis
     Minor Axis
     Radius of Rounded Ends
     Radius of Rounded Corners

60.960

5.668
2.198
1.099

60.960

5.715
2.222

0.635
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TABLE  5
INTERNAL BOUNDARY CONDITIONS FOR THE FNR SHIM-SAFETY RODS

Borated Stainless Steel Rods

Quantity Group 1 Group 2 Group 3 Group 4

Eu(eV)
Σa/Σs

D(cm)
Σa(cm-1)
L(cm)

τ/L
Σaτ

IBC = J/φ

1.0000E+07
6.8727E-03
1.6583E+00
1.8958E-03
2.9576E+01
7.4318E-02
4.1669E-03
2.5331E-02

8.2100E+05
6.4574E-03
8.8032E-01
3.3825E-03
1.6132E+01
1.3625E-01
7.4347E-03
-1.1123E-02

5.5300E+03
1.5990E-01
3.1743E-01
1.4756E-01
1.4667E+00
1.4986E+00
3.2434E-01
8.1122E-02

6.2500E-01
2.6788E+00
9.5010E-02
2.5676E+00
1.9236E-01
1.1426E+01
5.6436E+00
4.0956E-01

TiB2(95%10B)-Al6351 Rods

Σa/Σs

D(cm)
Σa(cm-1)
L(cm)

τ/L
Σaτ

IBC = J/φ

3.6927E-03
3.1275E+00
6.6305E-04
6.8680E+01
3.2360E-02
1.4736E-03
1.3262E-02

1.4154E-02
1.6415E+00
3.6092E-03
2.1326E+01
1.0422E-01
8.0214E-03
-6.9260E-03

1.7049E+00
1.1959E+00
1.7942E-01
2.5818E+00
8.6082E-01
3.9876E-01
1.1656E-01

3.7923E+01
9.3876E-02
3.4624E+00
1.6466E-01
1.3498E+01
7.6952E+00
4.1097E-01

NOTE: These tables show that:

1. IBC’s are not needed for groups 1 and 2 since Σa/Σs <<1.

2. IBC’s are needed for groups 3 and 4.

3. IBC for group 4 is that of a black rod since Σaτ >>1.
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4.1  Cadmium Control Elements

     Control elements used in the Oak Ridge Research Reactor (ORR) and the Swedish R2
Reactor have the same design.  The poison section consists of a water-filled square
cadmium annulus 2.345 in. (5.956 cm) on a side, 30.5 in. (77.47 cm) long, and 0.040 in.
(0.1016 cm) thick.  Since the width-to-thickness ratio is very large, effective diffusion
parameters obtained earlier for a cadmium slab of this thickness (see Table 1) are
applicable.  For the reasons given earlier, effective diffusion parameters are needed only
for the group 5 thermal neutrons (En < 0.625 eV).  Table 1 shows that for this group the
cadmium thickness in absorption mean free paths is greater than 5.  Therefore, the
cadmium sheet is effectively black to group 5 neutrons with a corresponding current-to-
flux ratio equal to 0.4692.  It was shown in Ref. 3 that the worth of a cadmium slab of this
thickness calculated with effective diffusion parameters obtained from the spectrum-
weighted P5 blackness coefficients (<α(P5)> and <β(P5)> and calculated using the group-5
black internal boundary condition gave nearly identical results both of which agreed with
the result of a Monte Carlo calculation within 1σ statistics.  Therefore, control rod worths
for the ORR and R2 reactors were calculated using the black internal boundary condition
for group 5 neutrons incident on the cadmium absorber and normal diffusion theory for all
the other groups.

     Table 6 summarizes 3D calculations for control rod worths in the R2 reactor.  Note
that all the diffusion-theory worth calculations agree within 1σ of the corresponding
VIM9-Monte Carlo results.  These values are taken from Ref. 3, which includes a
description of the R2 reactor core configuration.

     The ORR 179-AX5 core10 was water-reflected with all-fresh U3Si2 (4.8 gU/cm3) LEU
fuel.  It contained 14 standard (19-plate) fuel elements and 4 shim rods each with an upper
cadmium poison section and a lower 15-plate fuel follower section.  Differential rod
worths were measured by the positive period method.  The integral rod worth was
obtained by integrating the differential measurements from the lower to the upper limit of
the shim rod displacement.

     Measured and calculated integral worths for the D6 shim rod in ORR Core 179-AX5
are compared in Table 7.  As with the Swedish R2 reactor, the black internal boundary
condition (J/φ = 0.4692) was applied at the surface of the cadmium absorber for the
thermal group (En <0.625 eV) in the diffusion-theory calculations.  Table 7 also shows
that the DIF3D-diffusion and the VIM-Monte Carlo total worth calculations are in good
agreement, but are about 5.6% larger than the measured value.  This difference is typical
of ORR  worth measurements discussed in Ref. 10 and is partly the result of approximate
corrections to the experimental data for delayed photoneutrons and temperature feedback
effects.  Note that the integrated worth and the total worth, based on rod-in and rod-out
eigenvalue calculations, agree to within less that 1%.  However, these integral and total
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TABLE  6
EIGENVALUES AND CADMIUM CONTROL ROD WORTHS FOR THE SWEDISH R2

REACTOR

Fuela Rod Config. Keff -DIF3Db ∆ρc-%δk/k keff -VIM ∆ρc-%δk/k

HEU 25019
"
"
"

All Out
All In

At 50%
Only G3 Out

1.1602
0.9654
1.0826
1.0233

17.39
  6.18
11.53

1.1662±0.0025
0.9700±0.0022
1.0862±0.0024
1.0266±0.0024

17.34±0.30
  6.32±0.27
11.66±0.29

LEU 32616
"
"
"

All Out
All In

At 50%
Only G3 Out

1.1562
0.9655
1.0816
1.0184

17.09
  5.97
11.70

1.1537±0.0020
0.9656±0.0025
1.0790±0.0026
1.0191±0.0025

16.89±0.31
  6.00±0.27
11.45±0.28

aThe HEU 25019 notation stands for HEU fuel with 250 g 235U per 19-plate element.

bThe DIF3D calculations were done for group 5 of cadmium made black.

c∆ρ = (kout - kin)/koutkin.
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TABLE  7
D6 INTEGRAL ROD WORTH FOR ORR CORE 179AX5

Integration Limits, In.a Integral worth, % δk/k

LL = 0.0 UL = 26.56 Calc. Exp. C/E

7.239 6.855 1.056

Total Worth

Code R-out,
In.

R-in,
In.

R-bank,
In.

k-out k-in % δk/k

VIM
DIF3D

26.56
26.56

0.0
0.0

17.72
17.72

1.0400±0.0018
1.0371

0.9666±0.0020
0.9641

7.299±0.273
7.309

aIntegration of the differential rod worth from the lower to the upper limit gives the total rod worth.

WATER-REFLECTED LEU CRITICAL 179AX5

FE FE FE

FE FF
D4

FE FF
D6

FE

FE FE FE FE FE

FE FF
F4

FE FF
F6

FE

FE = 19-plate standard fuel element

FF = 15-plate fuel follower element
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worths are not expected to be exactly the same because of differences in the rod bank
elevations.

4.2  Ag-In-Cd Control Elements

     Some research reactors use control elements consisting of flat forked blades composed
of the Ag-In-Cd alloy described earlier.  For this alloy and for a thickness τ = 0.310 cm,
Table 2 gives the effective  diffusion parameters based on the flux-weighted P5 blackness
coefficients, <α(P5)> and <β(P5)>, for mesh intervals of h = τ and h = τ/2.  These
blackness-modified diffusion parameters were used in 3D diffusion-theory calculations to
determine control rod worths in the 10-MW IAEA Generic Reactor11. For this reactor the
23-plate fuel elements use fresh LEU U3Si2 - Al dispersion fuel with a 235U loading of
390 g per fuel element.

     DIF3D-diffusion and VIM-Monte Carlo results for eigenvalues and reactivities are
compared in Table 8.  They all agree within the 1σ Monte Carlo statistics.  Based on
effective diffusion parameters calculated from the Ag-In-Cd blackness coefficients, the
worth of Rod 3 was determined for mesh intervals of h = τ, τ/2, τ/3, and τ/4.  Table 8
shows that the calculated rod worth is nearly independent of the mesh interval size.
However, the results suggest a maximum value of h=τ/2 be used for determining the
effective diffusion parameters from the blackness coefficients.

4.3  Hafnium Control Elements

     Control elements for the Japanese 20-MW JRR-3 reactor12 consist of square water-
filled natural hafnium boxes 6.36 cm on a side and 0.50 cm thick.  Using the methods
described earlier, Table 3 shows the evaluated blackness coefficients for a hafnium slab of
this thickness and a density of 13.3 g/cm3.  The effective diffusion parameters were
evaluated using the spectrum-averaged P5 blackness coefficients.

     Three-dimensional DIF3D diffusion and VIM Monte Carlo calculations were used to
calculate control rod worths in the JRR-3 reactor.  The standard fuel element has 20 plates
whereas the control rod follower element has 16 plates of fresh LEU fuel.  Using effective
diffusion parameters corresponding to a mesh interval h = τ/2, Table 9 compares DIF3D
and VIM eigenvalues and control rod worths for the JRR-3 reactor.
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TABLE  8
XYZ CALCULATIONS FOR THE 10-MW IAEA GENERIC REACTOR
FOR FRESH LEU U3Si2 FUEL WITH Ag-In-Cd CONTROL BLADES

Rod
Configuration Code h-cm keff ∆ρa-% δk/k

All Out
All Out

All In
All In

Rod 3 Out
Rod 3 Out
Rod 3 Out
Rod 3 Out
Rod 3 Out

VIM
DIF3D

VIM
DIF3Db

VIM
DIF3Db

DIF3Db

DIF3Db

DIF3Db

h = τ/2

h = τ
h = τ/2
h = τ/3
h = τ/4

1.1922±0.0031
1.1903

1.0296±0.0031
1.0309

1.0838±0.0033
1.0790
1.0813
1.0818
1.0816

13.25±0.36
12.99

8.39±0.36
8.66
8.47
8.43
8.44

aBased on the Ag-In-Cd blackness-modified diffusion parameters.

b∆ρ = (kout - kin)/koutkin.

LOCATIONS of the Ag-In-Cd CONTROL BLADES in the 10-MW IAEA GENERIC  REACTOR

C C C C C C

ROD 1

ROD 2

ROD 3 Irr. Pos.

ROD 4

Irr  Pos. ROD 5

C C C C C C
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TABLE  9
EIGENVALUES AND HAFNIUM CONTROL ROD WORTHS FOR THE JRR-3 REACTOR

Rod Config. Keff -DIF3D ∆ρa-% δk/k keff -VIM ∆ρa-% δk/k

All Out
At 50%
All In

1.2291
1.1224
0.8689

   7.74
33.74

1.2227±0.0023
1.1143±0.0024
0.8763±0.0028

  7.96±0.25
32.33±0.39

a∆ρ = (kout - k)kout k.

D2O TANK

A C

B RR

  18-Plate Standard
  Fuel Element

  9-Plate Control
  Fuel Element

Figure 2.  FNR 27-Element Water-Reflected LEU Core
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4.4  Borated Stainless Steel Control Elements

     Shortly after the conversion of the Ford Nuclear Reactor (FNR) from HEU to LEU
fuel, full-length rod worth measurements were made in the 27-element fresh LEU core
(Fig. 2) in December 1981.  Total rod worths were obtained by integrating incremental
worths, measured by the positive period technique, from the lower to the upper limit of
rod movement.  The results of these measurements are reported in Ref. 13.

     The shape and composition of the borated stainless steel shim-safety rods used in this
UAlx-Al core are described in Table 4.  This table shows that the FNR shim-safety rods
cannot be approximated by a thin slab treatment and so blackness theory cannot be used to
evaluate their worth.  However, rod worths were evaluated for this 27-element core
configuration using the MCNP Monte Carlo code14, the DIF3D code with internal
boundary conditions (IBC’s) for groups 3 and 4 (see Table 5), and the DIF3D code with
effective diffusion parameters (EDP’s) obtained by matching reaction rate ratios15.
Table 10 compares measured and calculated rod worths and includes the University of
Michigan results based on their two-group reaction rate matching process described in
Ref. 5.  For all these calculations the rod worth was determined by computing the
reactivity difference between rod-in and rod-out cases with the regulating rod (RR) fully
withdrawn. The Monte Carlo and diffusion calculations with IBC’s are three-dimensional
whereas the diffusion calculations with EDP’s are two-dimensional XY calculations.
None of the calculations account for the beam tubes associated with the D2O tank on the
north side of the core, nor do the calculations account for the rod bank and regulating rod
elevations corresponding to the differential worth measurements, since this data is
unavailable.  Nevertheless, Table 10 shows very acceptable agreement among the
measured and calculated rod worth values.  Note that the rod worths are increased by
about 7% when they are evaluated for the case where the regulating rod is withdrawn
50% and the rod bank is withdrawn 67%.

4.5  Titanium Diboride Aluminum Control Elements

     In October 1995 the FNR borated stainless steel shim-safety rods were replaced with
borated aluminum rods composed of an alloy of titanium diboride in 6351 aluminum.  The
boron in the TiB2 has a 10B enrichment > 95%.  Table 4 compares the geometry and
compositions of the TiB2(95%10B)-Al6351 shim-safety rods with the former borated
stainless steel ones while Table 5 compares the internal boundary conditions.  These IBC’s
were used in 3-dimensional DIF3D calculations to determine the worths of the borated
aluminum rods in the 27-element FNR core (Fig. 2).  These rod-out and rod-in
calculations were done with the rod bank and the regulating rod fully withdrawn.
Table 11 summarizes the results and compares the rod worths with those obtained earlier
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TABLE 10
FNR EIGENVALUES AND SHIM-SAFETY ROD WORTHS

FOR THE 27-ELEMENT FRESH UAlX LEU CORE

% Rod Withdrawal Code Geom
.

Eigenvalue Rod Worth, % δk/k

Reg. Rod Bank Rod Meas. Calculated

100.0

100.0

50.0

100.0

50.0

100.0

50.0

100.0

100.0

66.7

100.0

66.7

100.0

66.7

A: 100.0

A: 0.0

A: 100.0
A: 0.0

B: 0.0

B: 100.0
B: 0.0

C: 0.0

C: 100.0
C: 0.0

MCNP
DIF3D: IBC’s
DIF3D: EDP’s

MCNP
DIF3D: IBC’s
DIF3D: EDP’s
UM-2DB: EDP’s
DIF3D: IBC’s
DIF3D: IBC’s

MCNP
DIF3D: IBC’s
DIF3D: EDP’s
UM-2DB: EDP’s
DIF3D: IBC’s
DIF3D: IBC’s

MCNP
DIF3D: IBC’s
DIF3D: EDP’s
UM2DB: EDP’s
DIF3D: IBC’s
DIF3D: IBC’s

XYZ
XYZ
XY

XYZ
XYZ
XY
XY

XYZ
XYZ

XYZ
XYZ
XY
XY

XYZ
XYZ

XYZ
XYZ
XY
XY

XYZ
XYZ

1.03234±0.00070
1.03632
1.02208

1.00999±0.00074
1.0145
0.99910

1.02035
0.99751

1.00938±0.00070
1.01176
0.99782

1.02106
0.99529

1.01084±0.00073
1.01450
0.99944

1.02040
0.99778

2.220

2.320

2.283

2.144±0.098
2.109
2.250
2.279

2.244

2.203±0.095
2.342
2.379
2.648

2.535

2.060±0.097
2.075
2.216
2.247

2.222
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TABLE 11
COMPARISON OF THE BORATED STAINLESS STEEL AND THE TiB2-Al

SHIM-SAFETY ROD WORTHS IN THE FNR 27-ELEMENT CORE

Rod Withdrawala Code Eigenvalue       Rod Worth
% δk/k

Ratio

% (TiB2-Al) TiB2-Al B-SS Calc’d Meas.b

A

A

B

C

100.0

0.0

0.0

0.0

DIF3D: IBC’s

DIF3D: IBC’s

DIF3D: IBC’s

DIF3D: IBC’s

1.03568

1.01074

1.00801

1.01113

2.383

2.650

2.345

2.109

2.342

2.075

1.130

1.131

1.130

1.148

1.095

1.096

aFor these calculations the regulating rod (RR) and the other shim-safety rods were fully withdrawn.

bThe TiB2-Al/B-SS rod worth ratio was calculated for the 27-element core (Fig. 2).  However, the
measured ratio is based on rod calibrations made in the October 1995 core when the borated stainless
steel shim-safety rods were replaced with TiB2(95%10B)-Al6351.
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 (Table 10) for the borated stainless steel material.  The worth of the newer rods is about
13% larger than that of the original rods.  This increase in rod worth is the result of the
larger circumference (6.8%) and the larger 10B concentration (42%) of the TiB2-Al6351
shim-safety rods relative to the borated stainless steel ones (see Table 4).  Although both
shim rod materials are black to thermal neutrons (En<0.625 eV), the higher 10B
concentration results in greater epithermal absorption in the TiB2-Al6351 (compare the
group-3 IBC’s in Table 5).  Shim-safety rod worths for both materials were measured in
the FNR October 1995 core16.  Table 11 compares the measured TiB2-Al/B-SS worth
ratios in this core with the values calculated for the 27-element core configuration.  The
average calculated and measured ratios are 1.13 and 1.11, respectively.  Different core
configurations and core burnup may be responsible for the somewhat different worth
ratios.

5.0   SUMMARY AND CONCLUSIONS

     The most reliable method for calculating control rod worths makes use of a Monte
Carlo code, such as MCNP14, which can model the reactor, the fuel assemblies, and the
shim-safety rods in considerable detail.  For diffusion-theory calculations, however, special
methods are needed because of steep flux gradients near the surface of strong neutron
absorbers.  These special methods fall into two categories.  In the first category, pairs of
group- and mesh-dependent effective diffusion parameters are found for the absorber.  In
the second category the absorber is isolated from the diffusion calculation by specifying
group-dependent internal boundary conditions (current-to-flux ratios) on the surface of
the absorber material.  High-order transport calculations are required to determine the
effective diffusion parameters or the internal boundary conditions.  In general, these
special methods are needed in multigroup diffusion calculations only for the low-energy
groups.  For those intermediate and fast groups for which Σa/Σs << 1 for the absorber the
unmodified diffusion parameters may be used.  Potentially, the effective diffusion
parameter method is somewhat more accurate than the method using internal boundary
conditions.  This is because the first method uses two adjusted parameters (Deff and Σa-eff)
for each group whereas the second uses only one (J/φ).  For symmetric situations where
fluxes and currents are the same on each side of the absorber, the two methods give
essentially identical results.

     This paper describes methods for calculating effective diffusion parameters and internal
boundary conditions.  For slab-like absorbers (thickness much less than transverse
dimensions), the effective diffusion parameters are expressed in terms of the α and β
blackness coefficients and the mesh spacing in the absorber.  For best results, spectrum-
weighted blackness coefficients evaluated in the P5 approximation are used.  For those
low-energy groups for which Σa/Σs >> 1, the modified zero-scatter approximation may be
used for the blackness coefficients, namely α0m and β0m.  For non-slab-like absorbers
effective diffusion parameters are found by adjusting the absorber cross sections until the
reaction rate ratio for absorption in the rod to fission in a neighboring fuel region matches
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that of a corresponding Monte Carlo or discrete ordinates transport calculation. Fine-mesh
transport calculations are used to determine internal boundary conditions from fluxes and
currents at the surface of the absorber.  However, values must not be used which exceed
radius-dependent current-to-flux ratios for perfectly black absorbers.  Methods for
calculating these “black” limits are discussed.

     All these methods are illustrated by calculating control rod worths for a number of
absorber materials (Cd, Ag-In-Cd, Hf,  borated stainless steel, and TiB2-Al6351) in several
research reactors.  In general, diffusion-theory worth calculations using these methods are
found to be in reasonable agreement with detailed Monte Carlo results and with
experimental measurements.
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APPENDIX

Blackness Coefficients and Effective Diffusion Parameters in Slab Geometry

     Mesh-dependent effective diffusion parameters are often used to calculate control rod
worths within the limitations of diffusion theory.  For slab absorbers these effective
diffusion parameters are functions of a pair of blackness coefficients.  This appendix
illustrates a method for calculating the blackness coefficients in the P1 approximation with
and without scattering in the absorber slab and discusses how the method may be extended
to the P3 and P5 approximations.  Equations are derived for the effective diffusion
parameters as functions of the blackness coefficients and the mesh interval size within the
absorber.

A.1  Matching Conditions on the Absorber Surfaces

     Consider the three-region slab configuration shown below.

                           I                II               III

                                x=0          x= τ

The absorber region (Region II) extends from x=0 to x=τ and is assumed to be a source-
free region which scatters neutrons isotropically.  Since the angular fluxes ψ(x,µ) incident
on Region II from Regions I and III must be continuous at the boundaries,

               ψII(0,µ) = ψI(0,µ),     µ>0

               ψII(τ,µ) = ψIII(τ,µ),     µ<0

where µ is the cosine of the angle between the flux direction and the normal to the slab.
The boundary fluxes in Regions I and III may be expanded into a power series over the
range of µ (-1 to 1).  Thus,

               ψ µ µI n
n

L
nA( , )0

0

=
=

∑

               ψ τ µ µIII n
n

L
nB( , ) =

=
∑

0
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Maynard (Ref. 1) has shown that the angular flux continuity requirement leads to the
matching conditions
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if the absorber (Region II) is source-free and scatters neutrons isotropically.  It turns out
that either the even or odd moments can be matched.  The odd moments are usually
chosen.  Thus, only odd values of m are used in these matching equations with mmax = L.
Rmn and Tmn are reflection and transmission coefficients defined by the equations

               R dmn t s t
m m

n( , / ) ( ) ( , )Σ Σ Στ µ ψ µ µ= −
−
∫1 0
1

0

               T dmn t s t
m

n( , / ) ( , )Σ Σ Στ µ ψ τ µ µ= ∫
0

1

Rmn and Tmn are the reflected and transmitted contributions to the outgoing mth moments
due to the incoming flux.  They are defined to be positive and are functions only of the
absorber thickness (τ) and its macroscopic scattering and absorption cross sections (Σs and
Σa).

A.2  Evaluation of the Reflection and Transmission Coefficients

     For the purpose of evaluating Rmn and Tmn it is convenient to assume that Regions I
and III are voids and that a µn (n=0,1,2,...) source distribution is incident on the absorber
slab from the left.  For this source distribution the monoenergetic one-dimensional
Boltzmann transport equation is solved for the surface angular fluxes ψn(0,µ) and ψn(τ,µ).
Using the one-dimensional option of the TWODANT code8 (i.e. ONEDANT), an angular
quadrature of 24 (S24), and double PN quadrature constants, Rmn and Tmn can be readily
integrated by the Gauss-Legendre quadrature method.  Thus,

               R Wmn
m

i
m

i

N

n i i= −
=
∑( ) ( , )

/

1 0
1

2

µ ψ µ ,               µ<0
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               T Wmn i
m

i

N

n i i=
=
∑ µ ψ τ µ

1

2/

( , ) ,                         µ>0

where N is the angular quadrature order (SN) and Wi are the required Gauss-Legendre
weights which are normalized so that in the range from i=1 to i=N/2 they sum to unity.
The abscissas (µi) and weights (Wi) are given below for N=24.

Abscissas                    Weights

±0.99078                    0.023588
±0.95206                    0.053470
±0.88495                    0.080039
±0.79366                    0.101580
±0.68392                    0.116750
±0.56262                    0.124570
±0.43738                    0.124570
±0.31608                    0.116750
±0.20634                    0.101580
±0.11505                    0.080039
±0.04794                    0.053470
±0.00922                    0.023588

     For the special case of a pure absorber slab (Σs = 0) Rmn is zero and Tmn can be easily
evaluated.  For this case the transmitted angular flux is the product of the incident flux µn

and the probability of a neutron passing through the slab without absorption (e-Σaτ/µ ).
Thus,

               T d e d Emn a
m

n
m n

m n a
a( ) ( , ) ( )

/Σ ΣΣτ µ ψ τ µ µ µ µ ττ µ= = =∫ ∫ + −
+ +

0

1

0

1

2

where Em+n+2 (Σaτ) is the exponential integral of order m+n+2.

A.3  Evaluation of the Blackness Coefficients

     In the regions outside the control blade the angular fluxes satisfy the monoenergetic,
one-dimensional, time-independent Boltzmann transport.  To obtain analytical expressions
for the blackness coefficients the angular fluxes on the surfaces of the absorber are
expanded into a series which in the PL approximation becomes
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                    ψ µ ψ µ( , ) ( ) ( ) ( )x n x Pn
n

L

n≅ +
=

∑1
2

0

2 1

where ψn(x) is the nth spherical harmonic moment and where Pn(µ) is the nth Legendre
polynomial.  The spherical harmonic moments are given by the equation

                    ψ ψ µ µ µn nx x P d( ) ( , ) ( )=
−
∫
1

1

Although the higher order moments are more complicated, ψ0(x) and ψ1(x) are just the
neutron flux and neutron current, respectively.

     In the P1 approximation (L=1=m) the angular fluxes on the left-hand and right-hand
surfaces of the absorber plate become

                    ψ ψ µ µ µl I n
n

L
nA A A≡ = = +

=

=

∑( , )0
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Similarly,

                    ψ ψ τ µ µ φ µr III r rB B J≡ = + = −( , ) 0 1
1
2

3
2

Hence,         A l0
1
2= φ ,     A Jl1

3
2= ,     B r0

1
2= φ ,     B Jr1

3
2= −   .

Note that B1 is negative because the blackness coefficients are defined in terms of currents
into the absorber slab.  Adding the Maynard matching equations for the L = 1 case gives

                    ( )( ) ( )( )1
2

1
3 010 10 0 0 11 11 1 1− − + − + + − =R T A B R T A B

Using the above values for (A0 + B0) and (A1 - B1) this equation becomes

                    ( )( )( ) ( )( )( )1
2

1
2

1
3

3
2 010 10 11 11− − + − + + + =R T R T J Jl r l rφ φ

The α blackness coefficient in the P1 approximation is therefore

                    α φ φ≡
+
+ = − −

+ +
( )
( )

( / )( )
( )

J J R T
R T

l r

l r

1 2 1 2 2
1 3 3
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Using the same procedure but subtracting the Maynard matching equations gives the β
blackness coefficient.

                    β φ φ≡
−
− = − +

+ −
( )
( )

( / )( )
( )

J J R T
R T

l r

l r

1 2 1 2
1 3 3

10 10

11 11

Note that the β-equation can be obtained from the α-equation by simply changing the sign
of the transmission coefficients.  This is a general result which is also valid in the P3 and P5

approximations.

     As discussed above, for the case of zero scattering the reflection coefficients vanish
and the transmission coefficients reduce to exponential integrals.  Thus, the no-scattering
P1 approximation for the blackness coefficients becomes

                    α
τ

τ0
3

4

1 2 1 2
1 3=

−
+

( / )[ ( )]
( )
E a

E a

Σ
Σ

                     β
τ

τ0
3

4

1 2 1 2
1 3=

+
−

( / )[ ( )]
( )
E a

E a

Σ
Σ   .

Recall that improved values are obtained for these blackness coefficients by using the
modified forms (α0m and β0m) in which the (1/2) coefficient is replaced with the value
0.4692.

     These P1 approximations for the blackness coefficients show that they are functions
only of the properties of the absorber slab (Σa, Σs, and τ).  This is also true for the higher
order approximations.  Although the algebra is tedious, these same methods can be used
to find the blackness coefficients in the P3 and P5 approximations.  However, for these
cases the spherical harmonic moments ψn(x) need to be evaluated on the surfaces of the
control slab for n=2,3,4 and 5.

     To calculate these higher-order spherical harmonics it is assumed that the control blade
is surrounded by an homogenized fuel zone.  For this medium the monoenergetic, one-
dimensional, time-independent Boltzmann equation is multiplied by (2n + 1)Pn(µ) and
integrated over all µ.  Using the recurrence relation

                    (n + 1)P n+1(µ) + nPn-1(µ) = (2n + 1)µPn(µ) ,

this integration leads to a set of first-order coupled differential equations for the spherical
harmonics which, in the PL approximation, are subject to the requirement that ψn(x) = 0
for n>L.  Solutions to these differential equations are of the form

                    ψn(x) = gn(ν) eνx/λ
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where λ is the total mean free path of neutrons in the homogenized fuel regions outside
the absorber slab.  Substituting this solution into the differential equations for the spherical
harmonics leads to a recurrence relation for the gn(ν)’s with g0(ν) defined to be unity.  In
the PL approximation ψL+1(x) = 0 which requires gL+1(ν) = 0.  This condition leads to the
allowed values of ν which are positive and which are (L-1)/2 in number.  Recall that in the
PL approximation only odd values of L are used.  Since the blackness coefficients are
functions only of the properties of the absorber slab, it is necessary to assume that the
surrounding fuel regions are infinite in extent (no leakage) with either isotropic or linear
anisotropic scattering.

     Following these procedures Ref. 3 shows that

                    g0(ν) = 1
                    g1(ν) = 0
                    g2(ν) = -1/2
                    g3(ν) = 5/(6ν)
                    g4(ν) = 3/8 - 35/(24ν2)
                    g5(ν) = -[9g4(ν) + 4 ν g3(ν)]/(5ν)
                    g6(ν) = -[11g5(ν) + 5 ν g4(ν)]/(6ν)

In the P3 approximation there is one allowed ν-value since (L-1)/2 = 1 and this value is
obtained from the requirement that g4 = 0.  Thus, ν2(P3) = (35)1/2/3.  Similarly, in the P5
approximation ν2(P5) = 1.2252109 and ν3(P5) = 3.2029453.  These values of ν and gn(ν)
determine the higher order spherical harmonics evaluated on the absorber slab surfaces.
Thus,

Spherical Harmonics in the P3 Approximation

                    ψ0l = φl + a2                                               ψ0r = φr + b2

                    ψ1l = Jl                                                       ψ1r = - Jr

                    ψ2l = g2(ν2) a2                                            ψ2r = g2(ν2) b2

                    ψ3l = g3(ν2) a2                                            ψ3r = - g3(ν2) b2

Spherical Harmonics in the P5 Approximation

                    ψ0l = φl + a2 + a3                                         ψ0r = φ0r + b2 + b3

                    ψ1l = Jl                                                        ψ1r = - Jr

                    ψ2l = g2(ν2) a2 + g2(ν3) a3                            ψ2r = g2(ν2) b2 + g2(ν3) b3

                    ψ3l = g3(ν2) a2 + g3(ν3) a3                            ψ3r = - g3(ν2) b2 - g3(ν3) b3

                    ψ4l = g4(ν2) a2 + g4(ν3) a3                                             ψ4r = g4(ν2) b2 + g4(ν3) b3

                    ψ5l = g5(ν2) a2 + g5(ν3) a3                            ψ5r = - g5(ν2) b2 - g5(ν3) b3
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where a2, a3, b2, and b3 are arbitrary constants which are eliminated in the evaluation of the
blackness coefficients.

     With these values for the spherical harmonics the blackness coefficients can be
calculated in the P3 and P5 approximations following the same approach as was used
above for the P1 approximation.  As before, the continuity requirement of the angular
fluxes at the surfaces of the absorber slab determines the expansion coefficients An and Bn

in terms of the spherical harmonics ψnl and ψnr.  To determine the blackness coefficient α
in the P3 approximation, for example, Maynard’s matching equations are added together
for m=1 and for m=3.  From these two equations the constant (a2 + b2) is eliminated and
from the resulting equation α(P3) is determined.  By subtracting the equations and
eliminating the constant (a2 - b2), β(P3) is obtained.  β(P3) can also be found by simply
changing the sign of all the transmission coefficients (Tmn) in the final expression for
α(P3).

     Although the algebra is very tedious, the same procedure is used to find α(P5) and
β(P5).  For this case Maynard’s two matching equations are added together for m=1, m=3,
and m=5.  From these three equations the constants (a2 + b2) and (a3 + b3) are eliminated
and the resulting equation solved for α(P5).  Changing the signs of the reflection
coefficients in this equation determines  β(P5.).

     For more details regarding these procedures see Ref. 3.  As for the P1 case, the P3 and
P5 blackness coefficients are functions only of the properties of the absorber slab (τ, Σa,
and Σs).

 A.4  Evaluation of the Effective Diffusion Parameters

     The effective diffusion parameters are chosen so as to preserve the current-to-flux
ratios on the surfaces of the control slab as given by the blackness coefficients.  Since
these effective diffusion parameters are to be used in a finite difference solution of the
diffusion equation, they contain an explicit dependence on the mesh interval size, h.  This
allows the use of a very coarse mesh in the absorber for diffusion calculations.  Equations
will be derived for the effective values of D and Σa for use in those diffusion codes, such as
DIF3D4, which evaluate fluxes at the center of mesh intervals.  The same methods may be
used to determine the effective diffusion parameters for codes which evaluate fluxes on
mesh interval boundaries.  These techniques for determining mesh-dependent effective
diffusion parameters as functions of α and β were first proposed by E. M. Gelbard.17
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     Consider the following diagram.

                             φl , Jl                                                                                φr , Jr

                                                           τ

                                                                                               h

                       x-1                x 1

                       φ-1                φ1

                                                                    Control Slab

It is convenient to assume that the same material extends to regions outside the absorber
slab of thickness τ.  Since α and β depend only on the properties inside the slab, this
assumption leads to no loss in generality.  If the flux varies linearly from the center to the
edge of the mesh cell,

                    φl = (φ-1 + φ1)/2          and          Jl = (D/h)(φ-1 - φ1)  .

The solution to the diffusion equation within the source-free absorber consists of a
symmetric (cosh kx) part and an asymmetric (sinh kx) part with respect to the centerline.
For the symmetric solution, φl = φr ,  Jl = Jr , φ1 = C cosh k(τ - h)/2, and φ-1 = C cosh k(τ +
h)/2 so that after some manipulation

α φ φ φ
φ φ

φ φ
τ

τ τ=
+
+ = =

−
+ = =−

−

J J J D
h

D k kh
h k kh

D
h k khl r

l r

l

l

2 2 2 2
2 2

2 2 21 1

1 1

( )
( )

[sinh( / )sinh( / )]
[cosh( / )cosh( / )] [tanh( / ) tanh( / )]

Similarly, for the asymmetric solution, Jl = -Jr, φl = -φr, φ1 = A sinh k(τ - h)/2, φ-1 = A sinh
k(τ + h)/2 so that

        β φ φ φ
φ φ

φ φ
τ

τ τ= −
− = =

−
+ = =−

−

J J J D
h

D k kh
h k kh

D
h

kh
k

r

l r

l

l

1 1 1

1 1

2 2 2 2
2 2
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2
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[cosh( / )sinh( / )]
[sinh( / )cosh( / )]

tanh( / )
tanh( / )

  .

The ratio of these equations gives
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        α
β τ= tanh ( / )2 2k

from which it follows that

          k = =
+
−
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/2 1
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1 1 2τ α β τ
β α
β α

  .

The expression for the effective diffusion coefficient is obtained by adding the equations
for α and β.

          D h kh k
kh Deff= + + =2

1
2( )

[ cosh ]tanh
sinhα β τ

An expression for the effective macroscopic absorption cross section is obtained by
writing the diffusion equation for the control slab in finite difference form and solving for
Σa.  Thus,

          Σ Σa a effD
d
dx

D
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n
n

n
n

D
h

kh= = + − + −







 = − = −

2
2 2

1 2 1 2
2 1

φ
φ

φ
φ

φ
φ/ [cosh ]

where

          φn = C cosh kxn

          φn+1 = C cosh k(xn + h)
          φn-1 = C cosh k(xn - h)   .

These equations for k, D, and Σa determine the effective diffusion parameters in terms of
the blackness coefficients (α and β) and the mesh interval size h for the case of mesh-
centered fluxes.

     The same procedures can be used to find the effective diffusion parameters for
diffusion codes which evaluate fluxes on mesh boundaries.  The results for k and Σa are
the same as those given above.  However, the expression for the effective diffusion
coefficient becomes

          D h k
kh= + =2 ( ) tanh

sinhα β τ Deff  .

For greatest accuracy the effective diffusion parameters should be evaluated using the
spectrum-weighted blackness coefficients <α(P5)> and <β(P5)>.


