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ABSTRACT 
 

IN THE AIM OF EMPHASIZING THE ROLE OF BONDING ENERGY 
BETWEEN ATOMS IN THE DECOMPOSITION OF THE METASTABLE 
GAMMA PHASE AND THE SOLUBILITY OF THIRD ELEMENTS IN U-
MO ALLOY, WE DECIDED TO EVALUATE THE THERMODYNAMIC 
FUNCTIONS OF THE BINARY U-MO AND TERNARY U-MO-X 
SYSTEMS BY USING FIRST PRINCIPLES CALCULATED TOTAL 
ENERGIES IN A CLUSTER EXPANSION METHOD. IN THE PRESENT 
STUDY, WE PERFORMED FIRST-PRINCIPLES ELECTRONIC 
CALCULATIONS OF 10 TOTALLY RELAXED BCC-BASED ORDERED 
U-MO STRUCTURES. THEN, WE DECIDED WHICH CLUSTERS 
SHOULD BE RETAINED IN THE CLUSTER EXPANSION OF THE 
THERMODYNAMIC FUNCTIONS COMPARING THEIR 
PERFORMANCE TO REPRODUCE THE EXPERIMENTAL 
EQUILIBRIUM PHASE DIAGRAM. FINALLY, WE DISCUSSED THE 
CONTRIBUTION OF THE MULTISITE INTERACTIONS IN THE 
PROPER DESCRIPTION OF THE ALLOY ENERGETIC. INTERACTION 
OF THREE BODIES HAS PROVED TO PLAY A FUNDAMENTAL ROLE 
IN STABILIZATION OF GAMMA PHASE, GIVING AT THE SAME TIME 
A USEFUL TOOL FOR PREDICTING TERNARY BEHAVIOR. 

 
1. Introduction 
 
Body-centered-cubic uranium alloys are being investigated to develop a nuclear fuel for 
research nuclear reactors that meets the requirements of low enrichment, high uranium 
density (>15.0 gU/cm3) and good irradiation behavior. The objective is that the fuel 
could remain stable in the body centered cubic phase (γ-U bcc solid solution) during 
fabrication (∼500°C) and irradiation (∼250°C), i.e., at temperatures at which α-U is the 
equilibrium phase [1].  



Several transition metals, particularly 4d and 5d elements in Group IV through VIII, 
form high temperature solid solutions with γ-U and this cubic phase can be retained in 
its metastable state upon cooling. Among them, Mo was recognized as a good 
candidate, showing a high solubility in γ U (∼ 35 at %) and an acceptable amount (∼ 20 
at. %) needed to stabilize γ U during fuel element fabrication at a working temperature 
of ~500°C. Small amounts of a third element such as transition metals, 4d and 5d, from 
groups VII and VIII had a powerful stabilizing effect when added to U-Mo alloys [2, 3].  
Hofmann and Meyer [4] have found an empirical relationship between the measured 
nucleation time for the decomposition of metastable γ U(Mo) phase in α U(Mo) + 
U2Mo (the position of the “nose” in the TTT diagram) and the enthalpy of mixing of the 
γ phase as estimate from  semi-empirical method by Miedema et al [5]. From this, it 
appears that the activation energy of nucleation is proportional to the negative of the 
enthalpy of mixing. Moreover, they show that this correlation can be extended to the 
addition of a third element X (transition metals, 4d and 5d, from groups VII and VIII) 
that replaces atoms of Uranium in the alloy U-Mo. Ternary enthalpy of mixing is 
estimated as the sum of that in the binary alloys U-Mo and U-X. 
Besides, the ultimate effectiveness of third element substitution on γ stabilization 
depends on the solubility limit of this element in γ-U(Mo) alloy and on the value of 
enthalpy of mixing in the ternary system. Unfortunately, solubilities of these third 
elements in the γ-U(Mo) phase are not well known.  
A report was published in 2001 [6] which compiles thermodynamic data on the U-Mo 
alloy, enthalpy and Gibbs energy of formation, and presents them as a function of the 
uranium composition and temperature in the form of a suitable polynomial. The authors 
also stated that there were no previous data on the thermodynamic functions of the 
quenched metastable alloy below the stable γ phase region, and measured the enthalpy 
increment of quenched U0.823Mo0.117 alloy from 299 to 820 K. From this data, together 
with the estimation of the enthalpy of formation at 298.15 K from Miedema model [5] 
and the entropy at the same temperature from the method of irreversible 
thermodynamics, they gave the expression for the Gibbs energy of formation. They 
finally compared these results with estimations obtained by applying the regular 
solution model and an empirical approach [7] to nearest neighbours bond energy. 
In the aim of emphasizing the role of bonding energy between atoms in the 
decomposition of the metastable γ phase and the solubility of third elements in U-Mo 
alloy, we decided to calculate the thermodynamic functions of the binary U-Mo and 
ternary U-Mo-X systems by using first principles thermodynamics [8]. This formalism 
establishes that the thermodynamics properties of an alloy can, in principle, be 
computed as accurately as desired through a technique known as the cluster expansion. 
A cluster is defined as a set of lattice points chosen in such a way that it contains the 
maximum correlation length to be considered. In the present study, we performed first-
principles electronic calculations of 10 totally relaxed bcc-based ordered U-Mo 
structures and then, we decided which clusters are retained in the cluster expansion of 
the thermodynamic functions comparing their performance to reproduce the 
experimental equilibrium phase diagram. Finally, we discussed the contribution of the 
multisite interactions in the proper description of the alloy energetic. 
This paper is organized as follows: First, a brief description of the cluster expansion 
formalism to calculate phase diagram from first principles is presented. We then show 
the bcc-based ordered structures chosen and the conditions of first-principles electronic 
calculations. Finally, the optimal cluster expansion construction and its cluster 
interactions are discussed.  



 
2. The Cluster Expansion Formalism. 
 
Based in the cluster expansion method [9], the formation energy ΔEF of any ordered or 
disordered alloy may be described with a truncated expression of the bilinear form:  

αα
α

ξVEF ∑=Δ               (1) 

in terms of the multisite correlation functions ξα and the expansion coefficients Vα 
which are known in the literature as the effective cluster interactions (ECI). The 
complete cluster expansion of Eq. (1) is formally exact, however, the utility of this rests 
in the possibility of identifying a hierarchy of a small number of clusters whose 
contributions Vα to ΔEF dominates those of the remaining clusters. 
The unknown parameters ECIs of the cluster expansion can then be determined by 
fitting this expression to a set of formation energies of ordered compounds, for which 
the corresponding correlation functions are known. These energies can be obtained, for 
instance, through first-principles electronic calculations. The number of ordered 
compounds in this set can be equal or greater than the number of Vα parameters to 
compute. It has been determined that a better cluster expansion is obtained if the system 
of Eq. (1) is overdeterminated [10], this is, ECIs can be determined from the condition:  
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where n
FEΔ  stands for the calculated energy of formation of the ordered compound n. 

After the energy of formation for a given alloy and parent lattice has been determined, it 
is of interest to examine how phase equilibrium between structures may evolve as a 
function of temperature and average concentration. The equilibrium states at constant 
volume and temperature are obtained by minimization of the Helmhotz free energy of 
formation       configff STEF Δ−Δ=Δ                (3) 
where the configurational entropy configSΔ  is calculated as a cumulant expansion in 
terms of subcluster partial entropies of a maximal cluster αmax  (Cluster Variational 
Method approach [11]). The entropy per lattice site is thus expressed as 
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where ( )αα σρ  is the cluster probability, αγ the so-called Kikuchi-Barker coefficients 
and kB the Boltzmann constant. The cluster probability is a function of the correlation 
functions through the expectation value of an orthogonal expansion [8, 9, 11]. The free 
energy functional per lattice site may now obtained, for a maximal cluster αmax , from 
Eqns. (1), (3) and (4) 

( ) ( )[ ]⎥
⎦

⎤
⎢
⎣

⎡
∑−∑=Δ αααα
ασ

ααα

α

α
σρσργξ ln

max
TkVF Bf       (5) 

At present, there are no selection criteria for choosing neither the right clusters nor the 
number of known structures that will enter in the cluster expansion. We looked forward 
the combination of set of clusters and set of ordered structures that best met the 
following three criteria: the ground state phase diagram should exhibit known stable 
phases, the calculated equilibrium phase diagram should agree with the experimental 
ones, and the predicted cluster-expanded energies of ordered compounds in the 
expansion should agree with the corresponding formation energy calculation via first 
principles (“exact calculation”). 



 
Name: 

Formula: 
A2, (bcc) 

A ; B 
DO3 

A3B ; AB3 
L60 

A3B ; AB3 

Crystal 
Structure 

   
Bravais lattice I P P 

Atoms in the unit cell (0,0,0) 

A: (0, 0, 0)       
B: (0, 1, 0)  

B: (1/2, 1/2, 1/2) 
B: (1/2, 1/2, 3/2) 

B: (0, 0, 0)         
A: (0, 0, 1) 

A: (1/2, 1/2, 1/2)    
A: (1/2, 1/2, 3/2) 

Unit cell vectors 
(1,0,0) 
(0,1,0) 
(0,0,1) 

(0, 1, 1) 
(1, 0, 1) 
(1, 1, 0) 

(1, 0, 0)  
(0, 1, 1) 
(0, -1, 1) 

Space Group number 
Pearson´s symbol 

229 
cI2 

225 
cF16 

123 
tP4 

Name: 
 

Formula: 

C11b 
 

A2B ; B2A 

B2 
 

AB 

B32 
 

AB 

Crystal 
Structure 

   
Bravais lattice P P P 

Atoms in the unit cell 
A: (0, 0, 0) 
A: (0, 0, 1) 

B: (1/2, 1/2, 1/2) 

A: (0, 0, 0)       
B: (1/2, 1/2, 1/2) 

A: (0, 0, 0)         
B: (0, 1, 0) 

A: (1/2, 1/2, 1/2)    
B: (1/2, 1/2, 3/2) 

Unit cell vectors 
(1,0,0) 
(0,1,0) 

(1/2, ½, 3/2) 

(1, 0, 0) 
(0, 1, 0) 
(0, 0, 1) 

(0, 1, 1) 
(1, 0, 1) 
(1, 1, 0) 

Space Group number 
Pearson´s symbol 

139 
 tI6 

221 
cP2 

227 
tP4 

Name: 
 

Formula: 

L21 
A2BC; 

AB2C;ABC2 
  

Crystal 
Structure 

 

  

Bravais lattice P   

Atoms in the unit cell 

A: (0, 0, 0) 
B: (1/2, ½, ½) 

C: (1/4, 1/4, 1/4) 
C: (3/4, 3/4, 3/4) 

  

Unit cell vectors 
(0, 1, 1) 
(1, 0, 1) 
(1, 1, 0) 

  

Space Group number 
Pearson´s symbol 

225 
 cF16  

  

Table 1. Crystal structure information for the bcc compounds considered in the cluster 
expansion. 

 



3. The total energy of ordered compounds. 
 
First principles total energy calculations were carried out for a total of 10 bcc-based 
ordered structures. Structure information is shown in Table 1, while formation energies 
are plotted in Figure 1. In selecting bcc-based structures a natural candidate was U2Mo 
structure, which existence was experimentally shown in U-Mo system [12]. The 
calculation were performed within the generalized gradient approximation [13], 
including relativistic corrections, using the Full Potential Linearized Augmented-Plane-
Wave (FP-LAPW) method implemented in the WIEN 97.8 code [14], with a k mesh of 
286 k points in the Brillouin irreducible zone. With regards to the cubic structures, the 
criterion to obtain the total energy was to minimize it as a function of lattice parameter. 
For tetragonal structures the process was to minimize a parameter keeping c constant 
then, taken this minimum a; minimize the c parameter and finally minimize the cell 
volume for the c/a value previously obtained. The process was repeated till convergence 
was achieved.  
 
4. Binary calculations results. 
 
The formation energy ΔEF of ordered compounds were computed from their total 
energies as [15]: 

( )MoMoUUTf EcEcEE +−=Δ          (10) 
where ET  , EU  and EMo are the total energy of the compound, Uranium and Molybdenum 
respectively. These values are shown in the ground state phase diagram of Figure 1 
(circles). There are two features of this phase diagram that are worth to emphasize. The 
calculated energies of formation predict only one stable compound (U2Mo) and an 
asymmetry that would stabilize the disordered alloy in the Uranium rich side as it is 
observed in the experimental bcc phase diagram of U-Mo (see Figure 2 [12]). 
In order to find the minimal cluster expansion that is able to predict both the ground 
state of Fig. 1 and the experimental bcc phase diagram of Fig. 2, we considered all the 
clusters shown in Figure 3 with a hierarchy of clusters up to fifth neighbors in five 
successive sets: p1 + p2 (A), p1 + p2 + t112 (B), p1 + p2 + p3 + t112 (C), p1 + p2 + p3 
+ t112 + t113 (D) and p1 + p2 + p3 + p5 + t112 + t113 (F) (where: pi is the ith neighbor 
pair and tijk is the triplet that involves ith,  jth and kth neighbors pairs). Thermodynamic 
equilibrium was obtained minimizing Helmhotz free energy as a function of site 
occupation and with the constraint of chemical potentials via the CVM method in all 
five approaches and they are illustrate in Figure 4. It can be seen that only D and F 
approaches reproduce the important experimental feature of the stabilization of U2Mo 
phase, exhibiting at the same time a more accurate phase boundary for the equilibrium 
Mo+γU(Mo). Although D and F approaches almost exhibit the same fit of the two phase 
field Mo + γU(Mo), F approach fits better the transformation temperature γU(Mo) + 
U2Mo.  
The effective cluster interactions (ECI) corresponding to F approach as a function of 
their size are shown in Fig. 5 and the cluster-expanded energy of formation for the 
considered ordered compounds (filled diamonds) and for the random bcc alloys (line) 
are shown in Fig. 1. Clearly, the choice of clusters yields the same ground states as the 
calculated energies. The short-range pair interactions dominate the miscibility gap 
observed both in our calculation and in the experimental diagram between the terminal 
solid solution Mo(U) and the γU(Mo) phase but, the asymmetry of the gap and the 
stabilities of the gamma phase and the compound U2Mo are due to the presence of 
triplet interactions, in particular that including first and third neighbors (t113). It is also 



remarkable that irregular tetrahedron approach fails to predict the correct phase diagram 
for this system [16, 17]. This allows us to assert that the irregular tetrahedron interaction 
plays no significant role in stabilizing γU(Mo) phase. 
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Figure 1. Ground state bcc phase diagram of U-Mo alloys. The ab initio calculations are 
represented by the circles while the cluster-expanded energies of formation are 

represented by filled diamonds. The curve stands for the corresponding energy of 
formation of disordered γU(Mo) alloy. 

 

 
Figure 2. The experimental phase diagram of U-Mo. 



 
Figure 3. Real-space depiction of the clusters used in the expansion. 

 

Figure 4. Comparison between the experimental and calculated bcc phase diagrams of 
U-Mo. Five sets of calculations are shown with a hierarchy of clusters up to fifth 

neighbors. 
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Figure 5. Effective cluster interactions for bcc-based Uranium-Molybdenum alloys. In 
the case of the three-body multisite ECIs, we have used the perimeter of the triplet as a 

measure of the range of the interactions. 



 
5.  Approach to ternary calculation: U-Mo-Pt. 
 
New FP LAPW calculations at T=0K were performed in order to obtain values of 
formation energies for bcc binary U-Pt and Mo-Pt compounds and ternary U-Mo-Pt 
compounds (L21 structure, cF16, AlCu2Mn type). They are shown in Table 2. 
  

Structure EF (kBK)
B2 UPt -6933,5835
B32 UPt -10103,7176

U3Pt 7182,9022
Upt3 47305,8488

B2 PtMo 2100,2730
B32 PtMo 26,8254

Pt3Mo -751,1191
PtMo3 14588,2976

L21 U2PtMo -1689,8046
L21 Pt2UMo -2347,9348
L21 Mo2PtU 1244,8970

Table 2. Formation energies of U-Pt and Mo-Pt binary comopunds and L21 ternary 
compounds. 

 
A first approach to γU(Mo, Pt) phase ternary composition field of estability was 
performed, including pairs till second neighbours, and clusters till tetraedron interaction.   
Thermodynamic equilibria was obtained for 2300K, 1700K y 1400K. Calculated Pt 
solubility in γ U(Mo) phase is negligible between 1400 K and 2300 K. We show in 
Figure 6 the partial equilibrium diagram calculated at 1700K. 

 

 
Figure 6. Calculated partial equilibrium diagram for U-Mo-Pt in the tetraedron 

approach. 
 



 Recent experimental data [18] show that an U-7wt%Mo-0,9wt%Pt alloy with short 
time lasting heat treatment below descomposition temperature exhibits α-UMo phase 
with no Pt content, U2Mo with no Pt content, and metastable retained γ U(Mo,Pt). 
Although γ U(Mo,Pt) is metastable at that temperature, this measurement indicates that 
the phase accepts at least 0,99at% Pt in solution at stability temperatures.  This result 
disagrees with our ternary calculations, but is at the same time another evidence 
showing that tetraedron approach is not a good one to reproduce U-Mo-Pt 
thermodynamic features. In the binary system,it was necesary to take into acount the 
estabilization of the U2Mo phase and the related triplet interaction with third order 
pairs. Thus, we are able to propose that triplets with third order pairs are also needed for 
an accurate description of the ternary U-Mo-Pt system equilibria. 
Besides, experimental results suggests that a ternary compound should be formed, as Pt 
alloy content was not accepted in the two U-Mo binary phases. This agrees with the 
stabilization tendency of binary U-Pt compounds and ternary L21 U2PtMo compound 
showed in FP LAPW calculations. It should be nevertheless noted that our calculations 
only include bcc compounds, and we have not calculated compounds with another 
crystalline structure. 
  
6. Conclusions 
 
It was demonstrated that the stability of γU(Mo) phase is dominated by a three-body 
multisite interaction consisting in two pairs of first neighbors and one pair of third 
instead of pairs interactions as was previously proposed. In consequence, it should be 
noted that the ultimate effectiveness of third element substitution on γ stabilization 
depends on how much this element modified the mentioned multisite interaction. 
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