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REVISION-1 RECORD

ANL/RERTR/TM-26 (original issue, May 1966) has been revised as follows:

Table 5 has been revised to increase the burnup range of TRIGA single-rod fuel
from 35 to 60% “*U burnup.

Alternative thermal decay heat expressions have been included which are
expected to give results close to actual heat |oads of spent fuel. The previous thermal
decay heat expression is expected to overestimate an actual heat load by about a factor of
two. An analysis of the parameter constants used in the previous expression would
suggest an uncertainty in calculated heat |oads of the order of 10%. A decay heat
comparison has been made for atypical fuel assembly using the ORIGEN code and the
decay heat expressions.

Appendix C has been added which compares mass inventory estimates using the
Isotope generation and depletion code, ORIGEN and the cross section generation code,
WIMS. Both codes solve material transmutation equations to determine material number
densities. WIMS, however, solves the equations as a function of material burnup, while
ORIGEN does not have asimilar capability.

Appendix D has been added to illustrate an example calculation of the nuclear
mass inventory, the photon dose rate, and the thermal decay heat for an assumed, spent
MTR-type fuel assembly. All fuel assembly parameters necessary for the calculations are
described.



NUCLEAR MASSINVENTORY, PHOTON DOSE RATE AND THERMAL DECAY HEAT
OF SPENT RESEARCH REACTOR FUEL ASSEMBLIES (Rev. 1)

R. B. Pond and J. E. Matos
Argonne National Laboratory
Argonne, IL

SUMMARY

This document has been prepared to assist research reactor operators possessing
spent fuel containing enriched uranium of United States origin to prepare part of the
documentation necessary to ship thisfuel to the United States. Data are included on the
nuclear mass inventory, photon dose rate, and thermal decay heat of spent research
reactor fuel assemblies.

| sotopic masses of U, Np, Pu and Am that are present in spent research reactor
fuel are estimated for MTR, TRIGA and DIDO fuel assembly types. The isotopic masses
of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and
of initial U-235 enrichment and U-235 mass in the fuel assembly.

Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are
estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities
between 0.089 and 2.857 MW/kg™*U, and for fission product decay times of up to 20
years.

Thermal decay heat |oads are estimated for spent fuel based upon the fuel
assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel
cooling time.

INTRODUCTION

As part of the Department of Energy’s spent nuclear fuel acceptance criteria, the
mass of uranium and transuranic elements in spent research reactor fuel must be
specified. These data are, however, not always known or readily determined. It is the
purpose of this report to provide estimates of these data for some of the more common
research reactor fuel assembly types. The specific types considered here are MTR,
TRIGA and DIDO fuel assemblies.



The degree of physical protection given to spent fuel assembliesislargely
dependent upon the photon dose rate of the spent fuel material. These data also, are not
always known or readily determined. Because of a self-protecting dose rate level of
radiation (dose rate greater than 100 rem/h at 1 min air), it isimportant to know the dose
rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR,
TRIGA and DIDO-type fuel assemblies are given in this report.

For safe spent fuel assembly containment, the thermal heat |oad generated by the
decay of fission products in spent fuel material is an important consideration. This heat
load can be estimated by a ssmple analytical expression that is given in this report.

NUCLEAR MASSINVENTORY

The mass inventory of the heavy metals in research reactor fuels has been
calculated using the WIMS code' for unit-cell models of MTR, TRIGA and DIDO fuel
assembly types. Models of each fuel assembly type were neutronically burned for a
length of time corresponding to typical fuel-cycle lengths and U-235 burnup’. Table 1
summarizes the fuel assembly models for which mass inventory cal culations were made.

Table 1. Fuel Assembly Models

Assembly Type U-235 Burnup, % U-235 Enrichment, % U-235 Mass, g
MTR 5, 10, 20, 30, 40, 50, 60, 70, 80 93 100 200 300 400
(29 fuel plates) 45 200 300 400
19.75 100 200 300 400 500

TRIGA 5, 10, 15, 20, 25, 30, 35, 40, 45, 70 (8.5wt% U) 133
(single rod) 50, 55, 60 20 (20wt% U) 98
20 (12wt% U) 54
20 (8.5wt% U) 38
TRIGA 10, 20, 30, 40, 50, 60 93.1 (10wt% U) 41.4
(25 rod cluster) 19.7 (45wt% U) 53.6
DIDO 10, 20, 30, 40, 50, 60 93 150
(4 fuel tubes) 80 150
60 150
20 200

Mass inventory calculations for MTR models were made for assemblies with up
to 80% U-235 burnup, for 93, 45 and 19.75% U-235 enrichments, and for initial U-235
masses of 100 to 500 g. The specific MTR model was for a 19-fuel plate assembly.
(Supplemental mass inventory calculations, shown in Appendix A, indicate that the MTR
model in not a strong function of the number of fuel plates or the specific fuel-clad-
coolant geometry.)

Similar calculations were made for two TRIGA assembly types — a single rod
model and a 25-rod cluster model. The maximum U-235 burnup in these models was

60%. There were four fuel types for the single rod model and two fuel types for the
cluster model.



For DIDO fuel assembly types, mass inventory calculations were made for a4-
fuel tube model with up to 60% U-235 burnup, and for four fuel enrichments and
assembly masses.

The results of the mass inventory cal culations are shown in the following tables:

Table2 — MTR Fuel 93% Enrichment, Page 12

Table 3 — MTR Fuel 45% Enrichment, Page 14

Table 4 — MTR Fuel 19.75% Enrichment, Page 16
Table 5 — TRIGA Fuel Single-Rod Model, Page 19
Table 6 — TRIGA Fuel 25-Rod Cluster Model, Page 21
Table 7 — DIDO Fuel, Page 22

The tables show the isotopic masses of U, Np, Pu and Am that are present in spent fuel as
functions of the fuel assembly U-235 burnup and initial U-235 mass. As will be noted in

the tables for most fuel assembly types, the uranium fuel compositions have excluded
initial enrichments of U-234 and U-236. In order to account for initial enrichments of U-

234 and/or U-236 in the tables, initial U-234 and U-236 masses can be simply added to
the spent fuel mass inventory. (See Appendix B for an assessment of the effect of initial
enrichments of U-234 and U-236 upon the overall mass inventory of U, Np, Pu and Am

in spent fuel.) Within the uncertainty of the calculations, the results in Tables 2—7 can be
used to estimate the spent fuel mass inventory in most MTR, TRIGA and DIDO fuel
assembly types. (See Appendix C for a comparison of calculational techniques.)

The mass inventories given in Tables 2—7 are at the time of reactor discharge and
therefore do not account for decay of Pu-241 to Am-241 for times after discharge. When
necessary to estimate mass inventories after discharge, the Pu-241 mass is decreased and

the Am-241 mass is increased by an amaMit= M, [{1-e™) where M, is the Pu-

241 mass at dischargk=13210™ d* (Pu-241 half-life, 14.4 y), and is the time in
days after discharge. No mass inventories are given for U-239 (half-life, 23.5 m) and Np-
239 (half-life, 2.355 d) as they are assumed to decay instantaneously to Pu-239.

PHOTON DOSE RATE

Calculated dose rates for MTR-type fuel assemblies are shown in Table 8. These
dose rates are from Ref. 3 and are for fuel assemblies with up to 80% U-235 burnup,
specific power densities between 0.089 and 2.857 M¥tkgand fission product decay
times of up to 20 years.

The data in Table 8 are photon dose rates in air that are averaged over a 60-cm
long cylindrical surface, located at a radius of 1 m from the fuel assembly axial center
line. For MTR-type fuel assemblies, these average dose rates are independent of the
assembly rotational orientation and the number of fuel plates in the assembly. These data
also can be interpolated for specific decay time, burnup and assembly power density. In
all cases, the dose rates must be multiplied by the mass of U-235 burned in the fuel



assembly to estimate the fuel assembly dose rate. The mass of U-235 burned per fuel
assembly that is necessary for an unshielded, 100 rem/h self-protecting dose rate at 1 m,
iIsshownin Fig. 1.

Additional analyses have shown that the photon dose rates of MTR, TRIGA and
DIDO-type fuel assemblies are similar, given the same fuel assembly characteristics of
U-235 burnup, fission product decay time, and specific fuel assembly power density. The
average doseratesat 1 min air for TRIGA (25-rod) and DIDO (4-tube) fuel assemblies
are respectively, 1.04 and 1.05 times the dose rates given in Table 8 for MTR fuel
assemblies. The dose rates of al three fuel assembly types are for fuel assembly models
(nominally 8cm by 8cm by 60cm) containing spent fuel in the form of either rods
(TRIGA fuel), annuli (DIDO fuel) or plates (MTR fuel). The small difference in the dose
rates are due to the different shielding effects of the fuel elementsin the fuel assemblies.

235

Table 8. Photon Dose Rates At 1 M In Air, rem/h per g™”U burned

Decay | Burnup, Assembly Power Density, MW/kg**°U
Time,y | %™°U

2.857 1.429 0.714 0.357 0.179 0.089
2 1% 1.84+0 1.84+0 1.83+0 1.80+0 1.77+0 1.70+0
3 1.13+0 1.13+0 1.13+0 1.13+0 1.11+0 1.11+0
4 9.01-1 9.01-1 9.01-1 9.01-1 9.01-1 8.92-1
2 10% 1.89+0 1.87+0 1.80+0 1.64+0 1.50+0 1.28+0
3 1.19+0 1.20+0 1.20+0 1.16+0 1.09+0 9.95-1
4 9.52-1 9.61-1 9.61-1 9.44-1 9.10-1 8.59-1
2 20% 2.01+0 1.98+0 1.86+0 1.66+0 1.42+0 1.19+0
3 1.31+0 1.32+0 1.28+0 1.21+0 1.11+0 9.78-1
4 1.04+0 1.05+0 1.04+0 9.99-1 9.44-1 8.63-1
5 8.97-1 9.10-1 9.05-1 8.80-1 8.46-1 7.95-1
10 6.67-1 6.67-1 6.67-1 6.59-1 6.50-1 6.25-1
15 5.78-1 5.78-1 5.74-1 5.70-1 5.61-1 5.44-1
20 5.10-1 5.10-1 5.10-1 5.06-1 4.97-1 4.85-1
2 40% 2.40+0 2.30+0 2.09+0 1.82+0 1.52+0 1.21+0
3 1.62+0 1.60+0 1.53+0 1.39+0 1.22+0 1.02+0
4 1.27+0 1.27+0 1.22+0 1.14+0 1.03+0 8.99-1
5 1.07+0 1.07+0 1.04+0 9.90-1 9.20-1 8.12-1
10 7.03-1 7.03-1 6.95-1 6.80-1 6.55-1 6.10-1
15 5.87-1 5.84-1 5.80-1 5.70-1 5.53-1 5.23-1
20 5.14-1 5.12-1 5.08-1 5.02-1 4.87-1 4.59-1
2 60% 2.95+0 2.79+0 2.52+0 2.15+0 1.74+0 1.34+0
3 2.05+0 2.00+0 1.87+0 1.66+0 1.40+0 1.12+0
4 1.59+0 1.56+0 1.49+0 1.35+0 1.17+0 9.63-1
5 1.30+0 1.29+0 1.24+0 1.15+0 1.02+0 8.54-1
10 7.55-1 7.51-1 7.37-1 7.07-1 6.70-1 6.02-1
15 5.96-1 5.96-1 5.88-1 5.72-1 5.50-1 5.04-1
20 5.17-1 5.17-1 5.13-1 4.99-1 4.76-1 4.39-1
2 80% 3.85+0 3.62+0 3.26+0 2.76+0 2.21+0 1.64+0
3 2.73+0 2.64+0 2.43+0 2.11+0 1.74+0 1.33+0
4 2.08+0 2.03+0 1.90+0 1.69+0 1.41+0 1.12+0
5 1.66+0 1.63+0 1.54+0 1.39+0 1.19+0 9.57-1
10 8.28-1 8.21-1 8.00-1 7.59-1 6.97-1 6.04-1
15 6.18-1 6.15-1 6.05-1 5.82-1 5.44-1 4.87-1
20 5.27-1 5.20-1 5.13-1 4.97-1 4.66-1 4.20-1
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Figure 1. Mass of Burned ““U per Fuel Assembly Necessary for an Unshielded 100 rem/h Dose Rate at 1 m
for Fuel Assemblies with 20, 40, 60 and 80% **U Burnup and Power Densities from 0.089 to 2.857 MW/kg**U



THERMAL DECAY HEAT

The textbook development of calculating the thermal decay heat of reactor fuel is
based upon integrating empirical emission rates of the beta and gamma radiation from
fission products. These results are, however, generally useful only for fission product
decay times of the order of afew days. For longer decay times, this heat load estimate is
very conservative.

Other analytical expressions have been devel oped to fit experimental decay heat
datafor longer decay times. For purposes of determining the heat load of spent fuel
which can have cooling times of the order of several hundred days of even years, these
latter expressions should be used to calculate the heat load of spent reactor fuel. These
analytical expressions also agree very well with ORIGEN decay heat calculations.

Integrated Beta And Gamma Emission Rates

The heat load from decaying fission productsin afuel assembly is proportional to
empirical emission rates of beta and gamma radiation. The rates’ per U-235 fission, and
as afunction of decay time t, indays, are

B(ty) =150010°° 4,72 MeV/sf
y(ty) =1670107° 0,72 MeV/sf

These energy rates are roughly equal for 0.4 MeV mean energy beta particlesand 0.7
MeV mean energy gamma-rays.

For afuel assembly irradiated continuously for t, daysat a constant fuel
assembly power (P), the heat (H) load power per assembly, t, days after irradiation is

H = 68501073 [P [ty 02 - (t; +t4) °?) Watts (1)

This expression for the heat load is the integral® of the above energy rates over the
irradiation time, assuming 200 MeV per U-235 fission, and for the fuel assembly power
in watts. For alow duty-factor fuel assembly irradiation, the power and irradiation time

are replaced by an average power and an elapsed time. With P [, = z (P0O;) overadl
irradiation segments, the heat (H) load power per assembly is

H 068501073 [P [ty 02 - (to +t4) %) Watts

where P isthe average fuel assembly power in watts and t, isthe elapsed timein days
from theinitial through the final irradiation segment.



A convenient estimate for the average power (P) is

P =(G/t,)/125M107° Watts

where G is the mass of U-235 burned in the fuel assembly in grams, and the constant is
g”*U burned per Watt-day.

A similar heat load expression to Eg. -1, given by Etherington (Ref. 6) and
attributed to Way and Wigner (Ref. 7 and 8), is

H =62201072 [P [ty 92 - (t; +t4) *?) Watts
with all timesin seconds. With all timesin days, this heat load expression is
H = 64001073 [P [ty %% - (t; +t4) °2) Watts

(Note, the Etherington reference to Way and Wigner appears to be incorrect. Reference 7
isVol. 73 (not Vol. 70)° of Phys. Rev.; Ref. 8 may be the intended reference. However
neither Ref. 7 or 8 appears to have the formula attributed to Way and Wigner. Reference
8 however, liststhesame 3 and 3 +y emission rates used to develop Eq. -1 which

resultsin a heat load expression constant of 685[10~°.) This and other similar heat load
expressions, which differ only by the constant, can be readily found in the literature (e.g.,

Ref. 5, 57102 for timesin seconds and 59102 for timesin days).

Fuel assembly decay heat |oads calculated with these expressions are expected to
be conservative, and within a factor of two or less of measured heat loads. This same
conservative heat |load estimate also has been found to be true for heat load calculations
made with the ORIGEN code’. The thermal heat load of afuel assembly isindependent
of the fuel assembly type.

The constants used in the above equations are based upon empirical data and
therefore, are not necessarily exact; it is not uncommon to find several percent variation
in arecommended value. The constants considered here, and their range, are:

1. the beta plus gamma fission product energy rate per fission;

2.7 - 3.2 -10 MeV/s-f,
2. the total energy release per fission; 190 - 200 MeV/f, and
3. the mass df°U burned per megawatt-day; 1.2 - 1-3g/yMwWd.

Depending upon the specific values of the constants that are chosen, the calculated heat
load can vary by several percent. In any case, the thermal decay heat is expected to be
over predicted.



Decay Heat Curves

An analytical expression given by El-Wakil (Ref. 10), which correlate with the
decay heat curves of Ref. 11, estimate heat |oads about one-half the heat loads calcul ated
above. This heat load expression is

H = 49501073 [P (1, 70% [1t, 02 — (¢, +14) °2) Waits 2
where al symbols, etc. have the same meaning as above and the times are in days.
Theratio of Eq.-2to Eq. -1is
49507006 /685= 0720, 0%
For decay times (ty) greater than 1 year, theratio is approximately 0.5.

Experimental Decay Heat Data

Another analytical expression given by Untermyer and Weills (Ref. 12), has been
used to fit experimental decay heat data. This heat |oad expression is

H = 01[P [(ty +10) 02 — (t; +ty +10) %]
—0087 P [(ty +2007) %2 —(t, +t4 +2010") °2] Watts 3

wheretheirradiation (t,) and decay (t,) times are in seconds.



A plot of theratio (H / P) for Egs. -2 and -3 are shown in Fig. 2 as afunction of
decay time and for an irradiation time of 600 days. The ratio calculated with the
ORIGEN code is aso shown for comparison.

Decay Heat per Unit Power

Irradiation Time = 600 days

0.0005
0.0004 - \\
\
\
|
0.0003 4 O \
—~ N —e— ORIGEN
a T\ --0-- Eq. -2 (EI-W.)
== 2\ —v— Eq. -3 (U.&W.)
fe! '
T
x
0.0002 -
0.0001 -|
0.0000 ; x x x x \
0 500 1000 1500 2000 2500 3000

Decay Time, days

Figure 2. Comparison of Decay Heat Equations-2 and -3 with ORIGEN

These data clearly show the relative decay heat estimated by the decay heat
expressions for atypical irradiation time. The ORIGEN ratio isin good agreement with
both Egs. -2 and -3.



CONCLUSIONS

Procedures have been developed to estimate the nuclear mass inventory, the
photon dose rate and the thermal decay heat of spent research reactor fuel assemblies.
The procedures should provide reasonable estimates based upon known fuel assembly
parameters. Estimates for an example spent fuel assembly are given in Appendix D.

I sotopic mass inventories of U, Np, Puand Am are tabulated in Tables 2—7 for
MTR, TRIGA and DIDO fuel assembly types; photon dose rates at 1 m in air are shown
in Table 8 for MTR-type fuel assemblies; and analytical expressions are given for the
thermal decay heat load of spent uranium fuel. Estimates of TRIGA and DIDO fuel
assembly dose rates are respectively, factors of 1.04 and 1.05 times the dose rate for
MTR-type fuel assemblies with similar spent fuel material characteristics.

10
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APPENDIX A

MTR MODEL MASSINVENTORY SENSITIVITY

This appendix examines the sensitivity of MTR-type fuel assembliesto the
number of fuel platesin the assembly as well as the fuel element specifications for the
fuel, clad and coolant. An examination of many MTR-type fuel assemblies shows that the
ratio of the coolant channel thickness to the fuel meat thickness, times the number of fuel
plates, is nearly a constant. This constant is aso proportional to the H/U-235 atom ratio
which can be used to characterize the neutron spectrum in MTR-type fuel assemblies.

Figure A1 shows the H/U-235 atom ratio as a function of the U-235 mass. The
upper curve are for 19-plate (0.51mm fuel, 0.38mm clad, 2.95mm coolant) elements and
the lower curve are for 23-plate (0.51mm fuel, 0.38mm clad, 2.19mm coolant) elements.
Most all MTR-type fuel assemblies as afunction of the fuel element specifications are
within the range (£6%) of the average H/U-235 ratio.
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MTR Fuel Neutron Spectrum Characterization
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Fuel Assembly Fissile Mass, g°*°U

Figure A1l. MTR Fuel Assembly Model Sensitivity

Tables A1-A3 show the mass inventory results for MTR fuel assembly types with
300g U-235 and 93, 45 and 19.75% U-235 enrichment. The difference between the upper
and lower bound results indicate only small differences in the isotopic masses as a
function of fuel element specification.
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APPENDIX B

U-234 AND U-236 MASSINVENTORY SENSITIVITY

Theinitial fuel composition of some reactor fuels may contain specifications for
U-234 and/or U-236 in addition to the usual specifications for U-235 and U-238. It isthe
purpose of this appendix to evaluate the effect that U-234 and U-236 have on the overall
fuel assembly mass inventory when these isotopes are or are not included in the initial
fuel assembly composition.

A comparison of the fuel mass inventory for aHEU and a LEU fuel composition,
with and without initial enrichments of U-234 and U-236, are shown in Table B1.
Typica enrichments of U-234 and U-236 in research reactor fuels are less than 1%; these
specific data are for typical TRIGA fuel compositions.

The upper section of Table B1 shows the mass inventory for HEU and LEU fuels
with initial enrichments of U-234 and U-236, and the lower section shows similar data
for the same fuels but without initial U-234 and U-236 enrichment. The result of this
comparison shows that to first-order, any initial mass of U-234 or U-236 can be simply
added to the mass inventory for U-234, U-236 and total U at any burnup level. The mass
inventory for Np-237 and Pu-238 which are also functions of the U-236 mass, are not
substantially affected by an initial enrichment of U-236.
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APPENDIX C

MASSINVENTORY ESTIMATE: ORIGEN VS.WIMS

In this paper, the spent fuel nuclear mass inventories are based upon material
number densities calculated within the WIM S code using burnup dependent cross
sections and fluxes to solve the material transmutation equations. Unit-cell models of
MTR, TRIGA and DIDO fuel assemblies with typical fuel compositions used WIMS to
generate actinide cross sections and number densities as a function of U-235 burnup.

Spot checks of the mass inventories for two TRIGA fuel compositions were also
calculated using the isotope generation and depletion code, ORIGEN. The principal
actinide cross sections input to ORIGEN were collapsed one-group, zero-burnup material
cross sections calculated by WIMS.

The fuel material mass inventories predicted by ORIGEN and by WIMS for
TRIGA fuel materials (133 g HEU and 38 g LEU) with 35% U-235 burnup are shown in
Table C1. The uranium isotopes at the 1-gram level and the Np, Pu and Am isotopes at
the 0.1-gram level are in reasonably good agreement. The slightly larger *'Np and **Pu

and the dlightly smaller ““U inventories are due to the use of zero-burnup cross sections
In estimating the 35% U-235 burnup inventories.

Table C1. Gram-Mass Inventory Estimates

8.5wt% U, 70% Enrichment 8.5wt% U, 20% Enrichment
133 g U-235 38 g U-235
ORIGEN WIMS ORIGEN WIMS

U-235 Burnup, % 35 35 35 35
U-235 Burned, g 47 47 13 13
U-234 0 0 0 0

U-235 86 86 25 25
U-236 8 8 2 2

U-238 55 55 150 151
U 150 150 177 177
Np-237 0.4 0.3 0.0 0.0
Np 0.4 0.3 0.0 0.0
Pu-238 0.0 0.0 0.0 0.0
Pu-239 1.3 1.1 0.9 0.9
Pu-240 0.2 0.2 0.1 0.1
Pu-241 0.1 0.1 0.0 0.0
Pu-242 0.0 0.0 0.0 0.0
Pu 1.6 1.4 1.1 1.0
Am-241 0.0 0.0 0.0 0.0
Am 0.0 0.0 0.0 0.0
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The mass inventories using the WIM S 35%-burnup material cross sections as
input to ORIGEN shows a change in the inventoriesin the direction of the WIMS results.

237, 239, 238

In particular, the “'Np and “"Pu inventories decrease and the ~“U inventory increases.
With these cross sections, the *’Np and **Pu inventories are slightly underestimated
compared to WIMS. The cross sections used in ORIGEN are not extremely sensitive to
burnup, but they should be for a specific fuel material composition and not ssimply
default library cross sections. The difference between ORIGEN and WIMS inventories

would be expected to increase as U-235 burnup increases.

Since the Np and Pu mass inventories calculated above are slightly overestimated
using zero-burnup cross sections and slightly underestimated using 35%-burnup cross
sections, it is recommended that mid-cycle burnup cross sections be used in any
ORIGEN mass inventory calculation. The mid-cycle cross sections would be expected to
approximately cancel any over- or under-estimate and give inventory masses of U, Np,
Pu and Am closer to the masses calculated with WIMS.
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APPENDIX D

EXAMPLE CALCULATION: NUCLEAR MASSINVENTORY,
PHOTON DOSE RATE AND THERMAL DECAY HEAT

235

In thisexample, a280 g~"U MTR-type fuel assembly has been irradiated at an
average fuel assembly power ( P) of 25 kW over an elapsed time ( t,,) of 3584 days. The

irradiation history of thisfuel assembly is such that it can not be described simply, using
aconstant power ( P) and a continuous irradiation time (t; ). It is assumed, however, that

P, =896MWd = > (P;)

where the sum of ( P ;) traces the fuel assembly irradiation history over al irradiation

segments when the fuel assembly power was constant and the irradiation time was
continuous. The elapsed time is the calendar time from the first through the last

irradiation segment. Assuming 1.25 g™"U burned per MW(d, this fuel assembly has 112
g™*U burned and 40% “*U burnup. The fission product decay time (t,4) or cooling time

for thisfuel assembly is assumed to be 3 years.

Nuclear Mass Inventory

If the fuel assembly enrichment is 93%, then 300 g**U, 40% “*U burnup data of
Table 2 can be prorated to 280 g**U. For enrichments of 45 or 19.75%, similar prorated
datafrom Table 3 or 4, respectively, should be used. Table D1 summarize the spent fuel

mass inventory of 280 g**U fuel assemblies which have 40% “*U burnup.

Table D1. Mass Inventory of Spent HEU, MEU and LEU Fuel Assemblies

Isotope HEU-93% MEU-45% LEU-19.75%
U-234 0 0 0
U-235 168 168 168
U-236 18 18 19
U-238 21 337 1125
U 206 523 1311
Np-237 04 04 04
Np 04 04 04
Pu-238 0.0 0.0 0.0
Pu-239 04 3.2 7.0
Pu-240 0.1 0.6 1.1
Pu-241 0.0 0.2 04
Pu-242 0.0 0.0 0.0
Pu 0.5 3.9 8.6
Am-241 0.0 0.0 0.0
Am 0.0 0.0 0.0
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235

These 280 g™U spent fuel inventory masses could aso have been estimated using
linear interpolation of the 200 and 300 g**U, 40% “*U burnup data tabulated in Tables 2,
3 and 4. Note, inventory masses for non-tabulated fuel assembly burnup should also use
linear interpolation of tabulated data (e.g. 45% “*U burnup, interpolate between 40 and
50% tabulated data).

Photon Dose Rate

The photon dose rate of this fuel assembly is calculated from data presented in
Table 8. The assembly power density is 0.089 MW/kg™U (25 kW / 280 g**U), the **U
burnup is 40%, and the decay timeis 3 years. With these data, Table 8 estimates that the
photon dose rate is 1.02 rem/h per g**U burned. With 112 g**U burned, the dose rate is
114 rem/h at 1 meter from the fuel assembly.

For fuel with 40% burnup and with 112 g**U burned, Fig. 1 estimates that this
fuel assembly will be self-protecting (dose rate greater than 100 rem/h) for about 4 years.

The photon dose rate for non-tabulated assembly power densities, “*U burnup
and/or decay times can be estimated using linear interpolation of the datain Table 8.
Linear interpolation to determine the photon dose rate would be necessary, for example,
for afuel assembly with the following parameters: 3.5 year decay time, 50% **U burnup
and 0.134 MW/kg™U assembly power density. A simple table which interpolates each
parameter separately isauseful aid. Table D2 is constructed to determine the photon

dose rate for these non-tabul ated fuel assembly parameters.

Table D2. Fuel Assembly Parameter Linear Interpolation

Decay | Burnup, Assembly Power Photon Dose Rate,
Time,y | % **U | Density, MW/kg*™*U | rem/h per g**U burned
3 50 0.179 131
3 50 0.089 1.07
3 50 0.134 1.19
4 50 0.179 1.10
4 50 0.089 0.931
4 50 0.134 1.0155
3.5 50 0.134 1.10

The bottom line, estimated photon dose rate is 1.10 rem/h per g**U burned.
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Thermal Decay Heat

ORIGEN Calculation

The thermal decay heat calculated with the ORIGEN code for this exampleis
about 4.2 Watts.

Integrated Emission Rate Equation

The thermal decay heat of thisfuel assembly using the conservative heat load
equation based upon Eq. -1

H 06850073 [P [ty %2 - (t, +t4) °?) Watts
is about 10.6 W. This result is based upon an average fuel assembly power ( P) of
25,000 Watts, a cooling or decay time (tq) of 1095 days (3 'y) and an elapsed time ( t¢)
of 3584 days.

El-Wakil Equation

The thermal decay heat with these same data and the heat 1oad equation based
upon Eg. -2

H 04.950073 [P 4 0% [ty 02 — (t, +t4) °2) Watts
isabout 5.1 W.
Untermyer and Wellls Equation

Similarly, using the heat |oad equation based upon Eq. -3 with a decay time of
9.46-10 seconds (1095 d) and an elapsed time of 3.18ed®nds (3584 d)

H OO1CP [(ty +10) %2 —(t, +t4 +10)0?]
~0087 P [(ty +2007) %2 —(t, +ty +2007) 2] Watts

is about 3.8 W.



